SOC in a population model with global control

被引:0
|
作者
Bröker, Hans-Martin [1 ]
Grassberger, Peter [1 ,2 ]
机构
[1] Physics Department, University of Wuppertal, D-42097, Wuppertal, Germany
[2] HLRZ C/o Forschungszentrum Julich, D-52425, Jülich, Germany
关键词
We thank W. Nadler for very useful discussions. This work was supported by the DFG within the ‘Graduiertenkolleg Feldtheoretische und numerische Methoden in der Elementarteilchen-und Statistischen Physik; and within Sonderforschungsbereich 237;
D O I
暂无
中图分类号
学科分类号
摘要
24
引用
收藏
页码:453 / 470
相关论文
共 50 条
  • [1] SOC in a population model with global control
    Bröker, HM
    Grassberger, P
    PHYSICA A, 1999, 267 (3-4): : 453 - 470
  • [2] From population control to AIDS: Conceptualising and critiquing the global crisis model
    Foley, Ellen E.
    Hendrixson, Anne
    GLOBAL PUBLIC HEALTH, 2011, 6 : S310 - S322
  • [3] SOC DEFEATS CHAOS - A NEW POPULATION-DYNAMICAL MODEL
    SCHEURING, I
    JANOSI, IM
    CSILLING, A
    PASZTOR, G
    FRACTALS IN THE NATURAL AND APPLIED SCIENCES, 1994, 41 : 341 - 348
  • [4] Global stability of a population model
    Din, Q.
    CHAOS SOLITONS & FRACTALS, 2014, 59 : 119 - 128
  • [5] Population model of cardiovascular diseases: Global dynamics, sensitivity analysis, and optimal control
    Nasir, Hanis
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (04): : 781 - 800
  • [6] PLENARY SESSION ON CONTROL OF GLOBAL POPULATION
    不详
    BMJ-BRITISH MEDICAL JOURNAL, 1965, 2 (5455): : 224 - +
  • [7] Global behavior of a discrete population model
    Hu, Linxia
    Shen, Yonghong
    Jia, Xiumei
    AIMS MATHEMATICS, 2024, 9 (05): : 12128 - 12143
  • [8] Persistence and global stability in a population model
    Gopalsamy, K
    Liu, PZ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 224 (01) : 59 - 80
  • [10] Malthus is Forever The Global Market for Population Control
    Hodges, Sarah
    GLOBAL SOCIAL POLICY, 2010, 10 (01) : 120 - 126