Boundary value problems - Iterative methods - Matrix algebra;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper the theoretical estimates of convergence rates in multigrid methods are discussed. The theory is based on abstract algebraic assumptions, but we do not assume that the coarse-grid correction matrices satisfy a Galerkin ansatz. Therefore the estimates can also be applied to nonnested grids. Sharp estimates are developed for a small number of levels. The results prove the robustness of the semicoarsening multigrid method with zebra-line Gauss-Seidel iterations and sharp estimates for V- and W-cycles.
机构:
Lomonosov Moscow State Univ, VMK Fac, OR Dept, MSU, Uchebniy Korpus 2, Moscow 119991, RussiaLomonosov Moscow State Univ, VMK Fac, OR Dept, MSU, Uchebniy Korpus 2, Moscow 119991, Russia
Izmailov, A. F.
Solodov, M. V.
论文数: 0引用数: 0
h-index: 0
机构:
IMPA Inst Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, BrazilLomonosov Moscow State Univ, VMK Fac, OR Dept, MSU, Uchebniy Korpus 2, Moscow 119991, Russia