Few-shot remaining useful life prediction based on Bayesian meta-learning with predictive uncertainty calibration

被引:0
|
作者
Chang, Liang [1 ]
Lin, Yan-Hui [1 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Meta-learning; Remaining useful life; Predictive uncertainty calibration; Variational inference;
D O I
10.1016/j.engappai.2024.109980
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning-based methods have been developed and widely used for predicting remaining useful life (RUL), a critical task in predictive maintenance aimed at minimizing machine downtime and optimizing maintenance schedules. These methods typically rely on substantial degradation data. However, in some real-world scenarios, degradation data are extremely limited. Meta-learning, a prominent few-shot learning method, leverages degradation data from auxiliary tasks to facilitate predictions in the target tasks. While meta-learning has improved prediction accuracy, there is inevitably uncertainty in predictions. To provide decision-makers with more reliable information, accurately quantifying predictive uncertainty is crucial. However, in meta-learning, both quantifying and calibrating predictive uncertainty are challenging due to data scarcity. This paper proposes a few-shot learning method for RUL prediction, named Bayesian model-agnostic meta-learning with predictive uncertainty calibration (BMLPUC), incorporating an uncertainty calibration term into the objective function for the model training. Additionally, the meta-training is optimized using two adaptive hyperparameters according to the model performance. The effectiveness of the proposed method is validated using two bearing datasets. Superior prediction accuracies and more accurately calibrated predictive uncertainty compared to the baseline and three other state-of-the-art methods are achieved by the proposed method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Few-shot remaining useful life prediction based on meta-learning with kernel network
    Yang, Jing
    Wang, Xiaomin
    Luo, Zhipeng
    INFORMATION SCIENCES, 2024, 653
  • [2] A survey on few-shot learning for remaining useful life prediction
    Mo, Renpeng
    Zhou, Han
    Yin, Hongpeng
    Si, Xiaosheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 257
  • [3] Prototype Bayesian Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [4] Few-Shot Prediction of Landslide Susceptibility Based on Meta-Learning Paradigm
    Chen, Li
    Ding, Yulin
    Zhu, Qing
    Zeng, Haowei
    Zhang, Liguo
    Liu, Fei
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (08): : 1367 - 1376
  • [5] A meta-transfer learning prediction method with few-shot data for the remaining useful life of rolling bearing
    She, Daoming
    Duan, Yudan
    Yang, Zhichao
    Pecht, Michael
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2025,
  • [6] Few-shot switch machine fault diagnosis based on Bayesian meta-learning
    Zhao P.
    Wang X.
    Fu M.
    Journal of Railway Science and Engineering, 2023, 20 (10) : 4008 - 4020
  • [7] Unsupervised meta-learning for few-shot learning
    Xu, Hui
    Wang, Jiaxing
    Li, Hao
    Ouyang, Deqiang
    Shao, Jie
    PATTERN RECOGNITION, 2021, 116
  • [8] Few-Shot Human Motion Prediction via Meta-learning
    Gui, Liang-Yan
    Wang, Yu-Xiong
    Ramanan, Deva
    Moura, Jose M. F.
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 441 - 459
  • [9] Few-shot personalized saliency prediction using meta-learning
    Luo, Xinhui
    Liu, Zhi
    Wei, Weijie
    Ye, Linwei
    Zhang, Tianhong
    Xu, Lihua
    Wang, Jijun
    IMAGE AND VISION COMPUTING, 2022, 124
  • [10] Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction
    Yang, Jing
    Wang, Xiaomin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 244