Exceptional sets for average conformal dynamical systems

被引:0
|
作者
Qu, Congcong [1 ]
Wang, Juan [2 ]
机构
[1] College of Big Data and Software Engineering, Zhejiang Wanli University, Zhejiang, Ningbo,315107, China
[2] School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai,201620, China
来源
基金
中国国家自然科学基金;
关键词
Entropy - Fractals - Set theory - Topology;
D O I
暂无
中图分类号
学科分类号
摘要
Let f: M → M be a C1+α local diffeomorphism/diffeomorphism of a compact Riemannian manifold M and μ be an expanding/hyperbolic ergodic f-invariant Borel probability measure on M. Assume f is average conformal expanding/hyperbolic on the support set W of μ and W is locally maximal. For any subset A ⊂ W with small entropy or dimension, we investigate the topological entropy and Hausdorff dimensions of the A-exceptional set and the limit A-exceptional set. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Exceptional sets for average conformal dynamical systems
    Qu, Congcong
    Wang, Juan
    CHAOS SOLITONS & FRACTALS, 2022, 161
  • [2] Exceptional sets in dynamical systems and Diophantine approximation
    Dodson, M
    RIGIDITY IN DYNAMICS AND GEOMETRY: CONTRIBUTIONS FROM THE PROGRAMME ERGODIC THEORY, GEOMETRIC RIGIDITY AND NUMBER THEORY, 2002, : 77 - 98
  • [3] ON A CLASS OF EXCEPTIONAL SETS IN THE THEORY OF CONFORMAL-MAPPINGS
    MAKAROV, NG
    MATHEMATICS OF THE USSR-SBORNIK, 1991, 68 (01): : 19 - 30
  • [4] p-radial exceptional sets and conformal mappings
    Kot, Piotr
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (04): : 579 - 587
  • [5] CONFORMAL DYNAMICAL-SYSTEMS
    SULLIVAN, D
    LECTURE NOTES IN MATHEMATICS, 1983, 1007 : 725 - 752
  • [6] Random conformal dynamical systems
    Deroin, Bertrand
    Kleptsyn, Victor
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (04) : 1043 - 1105
  • [7] Random Conformal Dynamical Systems
    Bertrand Deroin
    Victor Kleptsyn
    Geometric and Functional Analysis, 2007, 17 : 1043 - 1105
  • [8] Porosity in Conformal Dynamical Systems
    Chousionis, Vasileios
    Urbanski, Mariusz
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 172 (02) : 303 - 371
  • [9] DIMENSIONS OF C1-AVERAGE CONFORMAL HYPERBOLIC SETS
    Wang, Juan
    Wang, Jing
    Cao, Yongluo
    Zhao, Yun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (02) : 883 - 905
  • [10] Asymptotic Counting in Conformal Dynamical Systems
    Pollicott, Mark
    Urbanski, Mariusz
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 271 (1327) : I - +