Machine learning and statistical modelling for prediction of Novel COVID-19 patients case study: Jordan

被引:0
|
作者
Fayyoumi E. [1 ]
Idwan S. [1 ]
Aboshindi H. [2 ]
机构
[1] Department of Computer Science and Applications, Faculty of Prince Al Hussein Bin Abdullah II for Information Technology, Hashemite University, P.O. Box 330127, Zarqa
[2] P.O. Box 851275, Sweifieh, Amman
关键词
Logistic regression; Machine learning; Multi-layer perceptron; Novel COVID-19; Support vector machine;
D O I
10.14569/IJACSA.2020.0110518
中图分类号
学科分类号
摘要
As of December 2019, the world's view on life has been changed due to ongoing COVID-19 pandemic. This requires the use of all kinds of technology to help identify coronavirus patients and control the spread of this disease. In this paper, an online questionnaire was developed as a tool to collect data. This data was used as an input for various prediction models based on statistical model (Logistic Regression, LR) and machine learning model (Support Vector Machine, SVM, and Multi-Layer Perceptron, MLP). These models were utilized to predict potential patients of COVID-19 based on their signs and symptoms. The MLP has shown the best accuracy (91.62%) compared to the other models. Meanwhile, the SVM has shown the best precision 91.67%. © 2020 Science and Information Organization.
引用
收藏
页码:122 / 126
页数:4
相关论文
共 50 条
  • [1] Machine Learning and Statistical Modelling for Prediction of Novel COVID-19 Patients Case Study: Jordan
    Fayyoumi, Ebaa
    Idwan, Sahar
    AboShindi, Heba
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (05) : 122 - 126
  • [2] Statistical Analysis and Machine Learning Prediction of Disease Outcomes for COVID-19 and Pneumonia Patients
    Zhao, Yu
    Zhang, Rusen
    Zhong, Yi
    Wang, Jingjing
    Weng, Zuquan
    Luo, Heng
    Chen, Cunrong
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
  • [3] COVID-19 from symptoms to prediction: A statistical and machine learning approach
    Fakieh, Bahjat
    Saleem, Farrukh
    Computers in Biology and Medicine, 2024, 182
  • [4] A Novel Machine Learning based Model for COVID-19 Prediction
    Mazen, Tamer Sh
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (11) : 523 - 531
  • [5] A Novel Machine Learning based Model for COVID-19 Prediction
    Sh. Mazen T.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (11): : 523 - 531
  • [6] Modelling and Simulation of COVID-19 Outbreak Prediction Using Supervised Machine Learning
    Zagrouba, Rachid
    Khan, Muhammad Adnan
    Atta-ur-Rahman
    Saleem, Muhammad Aamer
    Mushtaq, Muhammad Faheem
    Rehman, Abdur
    Khan, Muhammad Farhan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 2397 - 2407
  • [7] COVID-19 Outbreak Prediction with Machine Learning
    Ardabili, Sina F.
    Mosavi, Amir
    Ghamisi, Pedram
    Ferdinand, Filip
    Varkonyi-Koczy, Annamaria R.
    Reuter, Uwe
    Rabczuk, Timon
    Atkinson, Peter M.
    ALGORITHMS, 2020, 13 (10)
  • [8] Machine learning prediction of COVID-19 mortality in cancer patients.
    Dienstmann, Rodrigo
    Menezes, Marcia
    e Silva, Matheus Costa
    Cruz, Heloisa
    Paes, Rafael
    da Silva, Jussaine Alves
    Messias, Anna Carolina R.
    De Marchi, Pedro
    Canedo, Jorge Alexandre
    De Melo, Andreia Cristina
    Jacome, Alexandre A.
    Reinert, Tomas
    Figueiredo Ferreira, Barbara Sodre
    Mathias, Clarissa
    Barrios, Carlos H.
    Ferreira, Carlos G. M.
    Ferrari, Bruno Lemos
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [9] Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
    Lee, Joong-Lyul
    Alwajidi, Safaa
    Tree, Mike
    Cristobal, Angelo
    Zhao, Haitao
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 373 - 384
  • [10] Machine Learning Algorithms in Application to COVID-19 Severity Prediction in Patients
    Ikramov, Alisher
    Anvarov, Khikmat
    Sharipova, Visolat
    Iskhakov, Nurbek
    Abdurakhmonov, Abdusalom
    Alimov, Azamat
    AI 2021: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13151 : 344 - 355