Characterization of an Overlooked Kinematical Descriptor in the Second-Gradient Hyperelastic Theory for Thin Shells

被引:0
|
作者
Tiwari, Sankalp [1 ]
Fried, Eliot [1 ]
机构
[1] Okinawa Inst Sci & Technol, Mech & Mat Unit, Okinawa 9040495, Japan
关键词
Hyperelastic shell; Material surface; Stretch gradient; Non-local kinematical variable; Orthogonal decomposition; Harmonic decomposition;
D O I
10.1007/s10659-024-10103-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In 1978, Murdoch presented a direct second-gradient hyperelastic theory for thin shells in which the strain-energy density associated with a deformation eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{\eta }$\end{document} of a surface S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}$\end{document} is allowed to depend constitutively on the three kinematical descriptors C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{C}$\end{document}, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{H}$\end{document}, and F inverted perpendicular G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{G}$\end{document}, where F=GradS eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{F}=\text{Grad} _{\scriptscriptstyle \mathcal{S}} \boldsymbol{\eta }$\end{document}, C=F inverted perpendicular F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{C}=\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{F}$\end{document}, H=F inverted perpendicular LS ' F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{H}=\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{L}_{ \scriptscriptstyle \mathcal{S}'}\boldsymbol{F}$\end{document} is the covariant pullback of the curvature tensor LS '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{L}_{\scriptscriptstyle \mathcal{S}'}$\end{document} of the deformed surface S '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}'$\end{document}, and G=GradSF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{G}=\text{Grad} _{\scriptscriptstyle \ma thcal{S}} \boldsymbol{F}$\end{document}. On the other hand, in Koiter's direct thin-shell theory, the strain-energy density depends constitutively on only C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{C}$\end{document} and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{H}$\end{document}. Due to the popularity of Koiter's theory, the second-order tensors C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{C}$\end{document} and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{H}$\end{document} are well understood and have been extensively characterized. However, the third-order tensor F inverted perpendicular G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{G}$\end{document} in Murdoch's theory is largely overlooked in the literature. We address this gap, providing a detailed characterization of F inverted perpendicular G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{G}$\end{document}. We show that for eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{\eta }$\end{document} twice continuously differentiable, F inverted perpendicular G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{G}$\end{document} depends solely on C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{C}$\end{document} and its surface gradient GradSC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{Grad} _{\scriptscriptstyle \mathcal{S}}\boldsymbol{C}$\end{document} and does not depend on LS '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{L}_{\scriptscriptstyle \mathcal{S}'}$\end{document}. For the special case of a conformal deformation, we find that a suitably defined strain measure corresponding to F inverted perpendicular G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{G}$\end{document} depends only the conformal stretch and its surface gradient. For the further specialized case of an isometric deformation, this strain measure vanishes. An orthogonal decomposition of F inverted perpendicular G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{F}<^>{\scriptscriptstyle \top }\boldsymbol{G}$\end{document} reveals that it belongs to a ten-dimensional subspace of the space of third-order tensors and embodies two independent types of non-local phenomena: one related to the spatial variations in the stretching of S '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}'$\end{document} and the other to the curvature of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}$\end{document}.
引用
收藏
页数:27
相关论文
共 31 条