A spectral based goodness-of-fit test for stochastic block models

被引:0
|
作者
Wu, Qianyong [1 ]
Hu, Jiang [1 ]
机构
[1] School of Mathematics & Statistics, Northeast Normal University, Changchun, China
来源
arXiv | 2023年
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning - Matrix algebra - Random variables - Statistical tests - Stochastic models - Stochastic systems
引用
收藏
相关论文
共 50 条
  • [1] A spectral based goodness-of-fit test for stochastic block models
    Wu, Qianyong
    Hu, Jiang
    STATISTICS & PROBABILITY LETTERS, 2024, 209
  • [2] A GOODNESS-OF-FIT TEST FOR STOCHASTIC BLOCK MODELS
    Lei, Jing
    ANNALS OF STATISTICS, 2016, 44 (01): : 401 - 424
  • [3] Goodness-of-fit test for latent block models
    Watanabe, Chihiro
    Suzuki, Taiji
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 154
  • [4] Goodness-of-fit test for stochastic volatility models
    Lin, Liang-Ching
    Lee, Sangyeol
    Guo, Meihui
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 473 - 498
  • [5] A goodness-of-fit test for ARCH(∞) models
    Economics Department, London School of Economics, Houghton Street, London, WC2A 2AE, United Kingdom
    不详
    J Econom, 2007, 2 (835-875):
  • [6] A GOODNESS-OF-FIT TEST BASED ON RANKS FOR ARMA MODELS
    FERRETTI, N
    KELMANSKY, D
    YOHAI, V
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (02) : 295 - 318
  • [7] A goodness-of-fit test for ARCH(∞) models
    Hidalgo, Javier
    Zaffaroni, Paolo
    JOURNAL OF ECONOMETRICS, 2007, 141 (02) : 973 - 1013
  • [8] Goodness-of-fit test for linear models based on local polynomials
    Alcalá, JT
    Cristóbal, JA
    González-Manteiga, W
    STATISTICS & PROBABILITY LETTERS, 1999, 42 (01) : 39 - 46
  • [9] ON A GOODNESS-OF-FIT TEST FOR MULTIPLICATIVE POISSON MODELS
    SVENSSON, A
    ANNALS OF STATISTICS, 1981, 9 (04): : 697 - 704
  • [10] Graphical goodness-of-fit test for mortality models
    Luz Gamiza, Maria
    Dolores Martinez-Miranda, Maria
    Raya-Miranda, Rocio
    MATHEMATICAL POPULATION STUDIES, 2018, 25 (03) : 123 - 142