In situ engineered Ce2O2S/CeO2 nanofibrous heterojunctions for photocatalytic H2O2 synthesis via S-scheme charge separation

被引:1
|
作者
Lin, Yuan [1 ]
Wang, Ying [1 ]
Feng, Ziying [1 ]
Gui, Yunyun [1 ]
Liu, Lijun [1 ]
机构
[1] Wuhan Text Univ, Hubei Key Lab Biomass Fibers & Ecodyeing & Finish, Sch Chem & Chem Engn, Wuhan 430200, Peoples R China
基金
中国国家自然科学基金;
关键词
S-scheme heterojunctions; CeO2; Electron transfer;
D O I
10.1016/j.jcis.2024.11.232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic H2O2 synthesis offers an efficient and sustainable means to convert solar energy into chemical energy, representing a forefront and focal point in photocatalysis. S-scheme heterojunctions demonstrate the capability to effectively separate photogenerated electrons and holes while possessing strong oxidation and reduction abilities, rendering them potential catalysts for photocatalytic H2O2 synthesis. However, designing Sscheme heterojunction photocatalysts with band alignment and close contact remains challenging. Here we report Ce2O2S/CeO2 multiphase nanofibrous prepared via an in situ sulphuration/de-sulphuration strategy. This in situ process enables intimate contact between the two phases, thereby shortening the charge transfer distance and promoting charge separation. The interfacial electronic interaction and charge separation were investigated using in situ X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. The work function difference enables Ce2O2S to donate electrons to CeO2 upon combination, resulting in the formation of an internal electric field (IEF) at interfaces. This IEF, along with bent energy bands, facilitates the separation and transfer of photogenerated charge carriers via an S-scheme pathway across the Ce2O2S/CeO2 interfaces. The Ce2O2S as the reduction photocatalyst exhibits significant O2 adsorption and activation along with a low energy barrier for the H2O2 production. The optimal Ce2O2S/CeO2 nanofibers heterojunction demonstrate enhanced photocatalytic H2O2 production of 2.91 mmol g- 1h- 1 , 58 times higher than that of pristine CeO2 nanofibers. This investigation provides valuable insights for the rational design and preparation of intimate contact nanofibrous heterojunctions with efficient solar H2O2 synthesis.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 50 条
  • [1] S-Scheme Heterojunction Photocatalyst for Photocatalytic H2O2 Production: A Review
    Fang, Weili
    Wang, Liang
    CATALYSTS, 2023, 13 (10)
  • [2] α-Fe2O3/CeO2 S-scheme heterojunction photocatalyst for enhanced photocatalytic H2 evolution
    Alzahrani, Khalid A.
    Ismail, Adel A.
    SURFACES AND INTERFACES, 2023, 39
  • [3] S-Scheme Heterojunction Photocatalysts for H2O2 Production
    Wang, Linxi
    Sun, Jian
    Cheng, Bei
    He, Rongan
    Yu, Jiaguo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (20): : 4803 - 4814
  • [4] Floatable S-scheme photocatalyst for H2O2 production and organic synthesis
    He, Rongan
    Xu, Difa
    Li, Xin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 138 : 256 - 258
  • [5] Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@ Polydopamine S-Scheme Heterojunctions
    Han, Gaowei
    Xu, Feiyan
    Cheng, Bei
    Li, Youji
    Yu, Jiaguo
    Zhang, Liuyang
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (07)
  • [6] Promoting charge separation in CuInS 2 /CeO 2 photocatalysts by an S-scheme heterojunction for enhanced photocatalytic H 2 production
    Wang, Jing
    Niu, Xingyu
    Hao, Qi
    Zhang, Kun
    Shi, Xinyi
    Yang, Liping
    Yang, Hui Ying
    Ye, Jilei
    Wu, Yuping
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [7] Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production
    Zhang, Keyu
    Li, Yunfeng
    Yuan, Shidan
    Zhang, Luohong
    Wang, Qian
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (06)
  • [8] ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance
    Zhang, Yong
    Qiu, Junyi
    Zhu, Bicheng
    Fedin, M. V.
    Cheng, Bei
    Yu, Jiaguo
    Zhang, Liuyang
    CHEMICAL ENGINEERING JOURNAL, 2022, 444
  • [9] Enhanced charge carrier transport in TiO2/COF S-scheme heterojunction for efficient photocatalytic H2O2 production
    Liu, Yang
    Li, Meng
    Liu, Tao
    Wu, Zhen
    Zhang, Liuyang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 233 : 201 - 209
  • [10] Enhancing photocatalytic H2O2 production with S-type heterojunctions of CeO2 coupled N-vacancy-rich carbon nitride
    Zhan, Xingyu
    Zeng, Yunxiong
    Hong, Bo
    Wang, Xinqing
    Xia, Yingchun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 681 : 44 - 52