Improving camera parameter estimation using an adaptive genetic algorithm

被引:0
|
作者
Khrouch, Hafsa [1 ]
Mahdaoui, Abdelaaziz [1 ]
Hsaini, Abdellah Marhraoui [1 ]
Merras, Mostafa [1 ]
Chana, Idriss [2 ]
Bouazi, Aziz [1 ]
机构
[1] Moulay Ismail Univ Meknes, IMAGE Lab, IEVIA Team, ESTM, BP 3103, Toulal, Morocco
[2] Moulay Ismail Univ Meknes, IMAGE Lab, SCIAM Team, ESTM, BP 3103, Toulal, Morocco
关键词
Camera calibration; Adaptive genetic algorithm; Cost function; Non-linear optimization; RECONSTRUCTION; CALIBRATION;
D O I
10.1007/s11760-024-03604-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose an adaptive genetic algorithm designed to address the camera calibration problem. This approach facilitates the resolution of a complex optimization challenge. Our objective is to refine the camera calibration results estimated by the analytical method. For this purpose, a study was conducted on the type and probability of crossover, the probability of mutation and on the adaptation of the initialization intervals. This adaptation consists of adjusting the length of the initialization intervals. The main objective is to find an optimal solution for the camera calibration parameters by minimizing the cost function. This function is reformulated from the relationship between the points of the 3D target and their 2D projection in the image. Experimental tests and evaluations were conducted to validate the proposed approach. The results indicate that our algorithm is robust and can achieve very satisfactory calibration results.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Robust camera parameter estimation using genetic algorithm
    Hati, S
    Sengupta, S
    PATTERN RECOGNITION LETTERS, 2001, 22 (3-4) : 289 - 298
  • [2] The induction motor parameter estimation through an adaptive genetic algorithm
    Zhou, XY
    Cheng, HZ
    Wang, HF
    UPEC 2004: 39TH INTERNATIONAL UNIVERSITITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, CONFERENCE PROCEEDINGS, 2005, : 494 - 498
  • [3] The third-order induction motor parameter estimation using an adaptive genetic algorithm
    Zhou, XY
    Cheng, HZ
    Ju, P
    PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 1480 - 1484
  • [4] The Induction Motor Parameter Estimation Using Genetic Algorithm
    Fortes, M. Z.
    Ferreira, V. H.
    Coelho, A. P. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1273 - 1278
  • [5] Parameter estimation of a heating system using a genetic algorithm
    Ahmad, M
    Zhang, L
    Readle, JC
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 195 - 200
  • [6] A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm
    Zhang, Song
    Kang, Ling
    Zhou, Liwei
    Guo, Xiaoming
    HYDROLOGY RESEARCH, 2017, 48 (01): : 17 - 27
  • [7] Adaptive Predictive Control of Induction Motors with On Line Parameter Estimation Using a Modified Genetic Algorithm
    Raptis, D. S.
    Kladas, A. G.
    2019 IEEE WORKSHOP ON ELECTRICAL MACHINES DESIGN, CONTROL AND DAGNOSIS (WEMDCD), VOL 1, 2019, : 103 - 108
  • [8] Parameter Estimation Using an Adaptive Immune Clone Selection Algorithm
    Liu, Zhang
    Tang, Hesheng
    Fan, Cunxin
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL II, 2009, : 58 - +
  • [9] Induction motor Parameter Estimation Using Hybrid Genetic Algorithm
    Sundareswaran, K.
    Shyam, H. N.
    Palani, S.
    James, Joby
    IEEE REGION 10 COLLOQUIUM AND THIRD INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, VOLS 1 AND 2, 2008, : 74 - +
  • [10] Modelling and Parameter Estimation of Solar Cell using Genetic Algorithm
    Kumar, Madhav
    Rao, D. V. Shiva Krishna K.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 383 - 387