Reinforcement learning and digital twin-driven optimization of production scheduling with the digital model playground

被引:0
|
作者
Seipolt, Arne [1 ,2 ]
Buschermöhle, Ralf [1 ]
Haag, Vladislav [1 ]
Hasselbring, Wilhelm [2 ]
Höfinghoff, Maximilian [1 ]
Schumacher, Marcel [1 ]
Wilbers, Henrik [1 ]
机构
[1] Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences, Lingen, Germany
[2] Department of Computer Science, Kiel University, Kiel, Germany
来源
Discover Internet of Things | 2024年 / 4卷 / 01期
关键词
Reinforcement learning;
D O I
10.1007/s43926-024-00087-0
中图分类号
学科分类号
摘要
The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework. © The Author(s) 2024.
引用
收藏
相关论文
共 50 条
  • [1] Digital Twin-Driven Reinforcement Learning Method for Marine Equipment Vehicles Scheduling Problem
    Shen, Xingwang
    Liu, Shimin
    Zhou, Bin
    Wu, Tao
    Zhang, Qi
    Bao, Jinsong
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (03) : 2173 - 2183
  • [2] Digital Twin-Driven Reinforcement Learning for Dynamic Path Planning of AGV Systems
    Lee, Donggun
    Kang, Yong-Shin
    Do Noh, Sang
    Kim, Jaeung
    Kim, Hijun
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS-PRODUCTION MANAGEMENT SYSTEMS FOR VOLATILE, UNCERTAIN, COMPLEX, AND AMBIGUOUS ENVIRONMENTS, APMS 2024, PT IV, 2024, 731 : 351 - 365
  • [3] A digital twin-driven flexible scheduling method in a human–machine collaborative workshop based on hierarchical reinforcement learning
    Rong Zhang
    Jianhao Lv
    Jinsong Bao
    Yu Zheng
    Flexible Services and Manufacturing Journal, 2023, 35 : 1116 - 1138
  • [4] Digital Twin-Driven VCTS Control: An Iterative Apporach Using Model-Based Reinforcement Learning
    Ye, Zijie
    Zhu, Li
    Li, Yang
    Wang, Hongwei
    Yu, F. Richard
    Tang, Tao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 3913 - 3924
  • [5] A digital twin-driven production management system for production workshop
    Ma, Jun
    Chen, Huimin
    Zhang, Yu
    Guo, Hongfei
    Ren, Yaping
    Mo, Rong
    Liu, Luyang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 110 (5-6): : 1385 - 1397
  • [6] Digital twin-driven dynamic scheduling of a hybrid flow shop
    Tliba, Khalil
    Diallo, Thierno M. L.
    Penas, Olivia
    Ben Khalifa, Romdhane
    Ben Yahia, Noureddine
    Choley, Jean-Yves
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (05) : 2281 - 2306
  • [7] Digital Twin-Driven Adaptive Scheduling for Flexible Job Shops
    Liu, Lilan
    Guo, Kai
    Gao, Zenggui
    Li, Jiaying
    Sun, Jiachen
    SUSTAINABILITY, 2022, 14 (09)
  • [8] Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction
    Lee, Dongmin
    Lee, SangHyun
    Masoud, Neda
    Krishnan, M. S.
    Li, Victor C.
    ADVANCED ENGINEERING INFORMATICS, 2022, 53
  • [9] A digital twin-driven flexible scheduling method in a human-machine collaborative workshop based on hierarchical reinforcement learning
    Zhang, Rong
    Lv, Jianhao
    Bao, Jinsong
    Zheng, Yu
    FLEXIBLE SERVICES AND MANUFACTURING JOURNAL, 2023, 35 (04) : 1116 - 1138
  • [10] Digital twin-driven dynamic scheduling of a hybrid flow shop
    Khalil Tliba
    Thierno M. L. Diallo
    Olivia Penas
    Romdhane Ben Khalifa
    Noureddine Ben Yahia
    Jean-Yves Choley
    Journal of Intelligent Manufacturing, 2023, 34 : 2281 - 2306