Perceptually-calibrated synergy network for night-time image quality assessment with enhancement booster and knowledge cross-sharing
被引:0
|
作者:
Li, Zhuo
论文数: 0引用数: 0
h-index: 0
机构:
Digital Ningbo Technol Co Ltd, Ningbo 315101, Zhejiang, Peoples R ChinaDigital Ningbo Technol Co Ltd, Ningbo 315101, Zhejiang, Peoples R China
Li, Zhuo
[1
]
Li, Xiaoer
论文数: 0引用数: 0
h-index: 0
机构:
Digital Ningbo Technol Co Ltd, Ningbo 315101, Zhejiang, Peoples R ChinaDigital Ningbo Technol Co Ltd, Ningbo 315101, Zhejiang, Peoples R China
Li, Xiaoer
[1
]
Shi, Jiangli
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaDigital Ningbo Technol Co Ltd, Ningbo 315101, Zhejiang, Peoples R China
Shi, Jiangli
[2
]
Shao, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaDigital Ningbo Technol Co Ltd, Ningbo 315101, Zhejiang, Peoples R China
Shao, Feng
[2
]
机构:
[1] Digital Ningbo Technol Co Ltd, Ningbo 315101, Zhejiang, Peoples R China
[2] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Image quality assessment (IQA) and image enhancement (IE) of night-time images are highly correlated tasks. On the one hand, IQA task could obtain more complementary information from the enhanced image. On the other hand, IE task would benefit from the prior knowledge of quality-aware attributes. Thus, we propose a Perceptually-calibrated Synergy Network (PCSNet) to simultaneously predict and enhance image quality of night-time images. More specifically, a shared shallow network is applied to extract the shared features for both tasks by leveraging complementary in-formation. The shared features are then fed to task-specific sub-networks to predict quality scores and generate enhanced images in parallel. In order to better exploit the interaction of complementary information, intermediate Cross-Sharing Modules are used to form efficient feature representations for the image quality assessment (IQA) and image enhancement (IE) subnetworks. Experimental results of the night-time image datasets show that the proposed approach achieves state-of-the-art performance on both quality prediction and image enhancement tasks.
机构:
Tsinghua Shenzhen Int Grad Sch, Dept Informat Sci & Technol, Shenzhen, Peoples R ChinaTsinghua Shenzhen Int Grad Sch, Dept Informat Sci & Technol, Shenzhen, Peoples R China
Hu, Runze
Liu, Yutao
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Sch Comp Sci & Technol, Qingdao, Peoples R ChinaTsinghua Shenzhen Int Grad Sch, Dept Informat Sci & Technol, Shenzhen, Peoples R China
Liu, Yutao
Wang, Zhanyu
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Shenzhen Int Grad Sch, Dept Informat Sci & Technol, Shenzhen, Peoples R ChinaTsinghua Shenzhen Int Grad Sch, Dept Informat Sci & Technol, Shenzhen, Peoples R China
Wang, Zhanyu
Li, Xiu
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Shenzhen Int Grad Sch, Dept Informat Sci & Technol, Shenzhen, Peoples R ChinaTsinghua Shenzhen Int Grad Sch, Dept Informat Sci & Technol, Shenzhen, Peoples R China
机构:
Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R ChinaFujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R China
Wang, Xuejin
Huang, Leilei
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R ChinaFujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R China
Huang, Leilei
Chen, Hangwei
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R ChinaFujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R China
Chen, Hangwei
Jiang, Qiuping
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R ChinaFujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R China
Jiang, Qiuping
Weng, Shaowei
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R ChinaFujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R China
Weng, Shaowei
Shao, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R ChinaFujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350108, Peoples R China