Bookmaking over infinite-valued events

被引:0
|
作者
Mundici, Daniele [1 ]
机构
[1] Dipartimento di Matematica Ulisse Dini, Università degli Studi di Firenze, viale Morgagni 67 /A, I-50134 Firenze, Italy
来源
关键词
We extend De Finetti's coherence criterion to the infinite-valued propositional logic of Lukasiewicz. Given a finite set of formulas ψi and corresponding real numbers βi ∈ [0; 1; we prove that the βi's arise from a finitely additive measure on formulas if; and only if; there is no possible choice of stakes σi ∈ R such that; for every valuation V the quantity ∑i = 1n σi (βi - V (ψi)) is i are logically related. In a final section we deal with the problem of deciding if a book is Dutch. © 2006 Elsevier Inc. All rights reserved;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:223 / 240
相关论文
共 50 条
  • [1] Bookmaking over infinite-valued events
    Mundici, Daniele
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2006, 43 (03) : 223 - 240
  • [2] Extension of belief functions to infinite-valued events
    Tomáš Kroupa
    Soft Computing, 2012, 16 : 1851 - 1861
  • [3] Extension of belief functions to infinite-valued events
    Kroupa, Tomas
    SOFT COMPUTING, 2012, 16 (11) : 1851 - 1861
  • [4] THREE CHARACTERIZATIONS OF STRICT COHERENCE ON INFINITE-VALUED EVENTS
    Flaminio, Tommaso
    REVIEW OF SYMBOLIC LOGIC, 2020, 13 (03): : 593 - 610
  • [5] Towards a Standard Completeness for a Probabilistic Logic on Infinite-Valued Events
    Flaminio, Tommaso
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2019, 2019, 11726 : 397 - 407
  • [6] Finite-valued reductions of infinite-valued logics
    Aguzzoli, S
    Gerla, B
    ARCHIVE FOR MATHEMATICAL LOGIC, 2002, 41 (04) : 361 - 399
  • [7] Maximal infinite-valued constraint languages
    Bodirsky, Manuel
    Chen, Hubie
    Kara, Jan
    von Oertzen, Timo
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 546 - +
  • [8] Finiteness in infinite-valued Łukasiewicz logic
    Aguzzoli S.
    Ciabattoni A.
    Journal of Logic, Language and Information, 2000, 9 (1) : 5 - 29
  • [9] INDEPENDENT AXIOMS FOR INFINITE-VALUED LOGIC
    HAY, L
    JOURNAL OF SYMBOLIC LOGIC, 1966, 31 (04) : 665 - &
  • [10] Maximal infinite-valued constraint languages
    Bodirsky, Manuel
    Chen, Hubie
    Kara, Jan
    von Oertzen, Timo
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (18) : 1684 - 1693