Minimal nonlinear distortion principle for nonlinear independent component analysis

被引:0
|
作者
Department of Computer Science and Engineering, Chinese University of Hongkong, Hong Kong, Hong Kong [1 ]
机构
来源
J. Mach. Learn. Res. | 2008年 / 2455-2487期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Minimal Nonlinear Distortion Principle for Nonlinear Independent Component Analysis
    Zhang, Kun
    Chan, Laiwan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 2455 - 2487
  • [2] Independent Nonlinear Component Analysis
    Gunsilius, Florian
    Schennach, Susanne
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 1305 - 1318
  • [3] A noisy nonlinear independent component analysis
    Ma, S
    Ishii, S
    MACHINE LEARNING FOR SIGNAL PROCESSING XIV, 2004, : 173 - 182
  • [4] Nonlinear approaches to independent component analysis
    Lee, TW
    STOCHASTIC DYNAMICS AND PATTERN FORMATION IN BIOLOGICAL AND COMPLEX SYSTEMS, 2000, 501 : 302 - 316
  • [5] Cluster based nonlinear principle component analysis
    Brunel Univ, Middlesex, United Kingdom
    Electron Lett, 22 (1858-1859):
  • [6] Cluster based nonlinear principle component analysis
    Bowden, R
    Mitchell, TA
    Sarhadi, M
    ELECTRONICS LETTERS, 1997, 33 (22) : 1858 - 1859
  • [7] Approximating nonlinear transformations of probability distributions for nonlinear independent component analysis
    Honkela, A
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2169 - 2174
  • [8] Nonlinear independent component analysis by learning generalized adalines
    Wu, Jiann-Ming
    Yang, Yi-Cyun
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 530 - +
  • [9] Nonlinear independent component analysis:: Existence and uniqueness results
    Hyvärinen, A
    Pajunen, P
    NEURAL NETWORKS, 1999, 12 (03) : 429 - 439
  • [10] Function Classes for Identifiable Nonlinear Independent Component Analysis
    Buchholz, Simon
    Besserve, Michel
    Schölkopf, Bernhard
    Advances in Neural Information Processing Systems, 2022, 35