Online core temperature estimation method for lithium-ion batteries over the entire lifecycle

被引:0
|
作者
Chen, Saihan [1 ]
Wang, Zhenpo [1 ]
Zhang, Puchen [1 ]
Yu, Yongchao [1 ]
Liu, Xianchen [1 ]
Li, Lei [1 ]
Sun, Jinlei [2 ]
机构
[1] Beijing Inst Technol, Natl Engn Res Ctr Elect Vehicles, Beijing 100081, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Core temperature estimation; lithium-ion battery; Battery lifecycle; State modified; Parameters identification; CHARGE ESTIMATION; THERMAL-MODEL; IMPEDANCE; STATE;
D O I
10.1016/j.est.2024.115033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Online monitoring of the core temperature in Lithium-ion batteries (LIBs) is essential for effective thermal management and risk prevention. Throughout the lifecycle of LIBs, battery aging and dynamic changes in the external environment complicate core temperature estimation. To address this challenge, this paper proposes a parameter and state-modified core temperature estimation method based on a simplified electro-thermal coupled model. The Thevenin model is coupled with the lumped equivalent thermal circuit (ETC) through temperature to establish a simplified electro-thermal coupled model. Then, A novel Dual AFFRLS-DEKF joint algorithm is introduced for the online identification of all parameters within the model and simultaneously estimates the battery's state of charge (SOC), state of health (SOH), and core temperature. The proposed method enhances adaptability to dynamic environmental changes by updating model parameters online and modifies SOC and SOH in real time to account for changes in heat generation due to battery aging. Finally, an experimental platform was established to validate the proposed method. The results demonstrate that the proposed method is robust and accurate in estimating core temperature over the entire lifecycle, with a root mean square error (RMSE) of core temperature estimation less than 0.5 degrees C and a maximum absolute error (MAE) less than 1 degrees C.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An Enhanced Online Temperature Estimation for Lithium-Ion Batteries
    Xie, Yi
    Li, Wei
    Hu, Xiaosong
    Lin, Xianke
    Zhang, Yangjun
    Dan, Dan
    Feng, Fei
    Liu, Bo
    Li, Kexin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2020, 6 (02): : 375 - 390
  • [2] Adaptive method for sensorless temperature estimation over the lifetime of lithium-ion batteries
    Ludwig, S.
    Zilberman, I
    Oberbauer, A.
    Rogge, M.
    Fischer, M.
    Rehm, M.
    Jossen, A.
    JOURNAL OF POWER SOURCES, 2022, 521
  • [3] A method for the lifetime sensorless estimation of surface and core temperature in lithium-ion batteries via online updating of electrical parameters
    Rodriguez-Iturriaga, Pablo
    Ansean, David
    Antonio Lopez-Villanueva, Juan
    Gonzalez, Manuela
    Rodriguez-Bolivar, Salvador
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [4] Parametrization and Core Temperature Estimation of Lithium-Ion Batteries for Thermal Management
    Jeewandara, J. M. D. S.
    Karunadasa, J. P.
    Hemapala, K. T. M. U.
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [5] Online capacity estimation for lithium-ion batteries through joint estimation method
    Yu, Quanqing
    Xiong, Rui
    Yang, Ruixin
    Pecht, Michael G.
    APPLIED ENERGY, 2019, 255
  • [6] A Spatiotemporal Estimation Method for Temperature Distribution in Lithium-Ion Batteries
    Liu, Zhen
    Li, Han-Xiong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (04) : 2300 - 2307
  • [7] A deep learning method for online capacity estimation of lithium-ion batteries
    Shen, Sheng
    Sadoughi, Mohammadkazem
    Chen, Xiangyi
    Hong, Mingyi
    Hu, Chao
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [8] An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation
    Liu, Yongjie
    Huang, Zhiwu
    Wu, Yue
    Yan, Lisen
    Jiang, Fu
    Peng, Jun
    APPLIED ENERGY, 2022, 327
  • [9] Adaptive Temperature Estimation for Lithium-Ion Batteries
    Jiang, Yu
    Chen, Ziqiang
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 1066 - 1070
  • [10] Online parameter and state estimation of lithium-ion batteries under temperature effects
    Chaoui, Hicham
    Gualous, Hamid
    ELECTRIC POWER SYSTEMS RESEARCH, 2017, 145 : 73 - 82