Application of deep reinforcement learning in various image processing tasks: a survey

被引:0
|
作者
Tadesse, Daniel Moges [1 ]
Kebede, Samuel Rahimeto [1 ,3 ]
Debele, Taye Girma [1 ,2 ]
Waldamichae, Fraol Gelana [1 ]
机构
[1] Ethiopian Artificial Intelligence Institute, Addis Ababa,40782, Ethiopia
[2] College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa,120611, Ethiopia
[3] College of Engineering, Debreberhan University, Debreberhan,222, Ethiopia
关键词
Deep reinforcement learning;
D O I
10.1007/s12530-024-09632-2
中图分类号
学科分类号
摘要
A subset of machine learning algorithm called Deep Reinforcement Learning (DRL) enables computers or agents to learn behavior by taking actions in a given environment through trial and error while observing the rewards. In this learning paradigm, the agent is given a set of actions to chose and is then rewarded or punished depending on the results of those actions. The agent gradually develops the ability to make the best decisions by maximizing its rewards. DRL blends the learning ability of deep neural networks into the decision making capability of reinforcement learning (RL) frameworks in order to seeks and identify the most favorable set of actions. This survey paper studies DRL applications for diverse image processing tasks. It starts by providing an overview of the latest model-free and model-based RL and DRL algorithms. Then, it looks at how DRL is being used for various image processing tasks including image segmentation and classification, object detection, image registration, image denoising, image restoration, and landmark detection. Lastly, the paper discusses the potential uses and challenges of DRL in the proposed area by addressing the research questions. Survey results have showed that DRL is a promising approach for image processing and that it has the potential to solve complex image processing tasks. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
相关论文
共 50 条
  • [1] Developments in Image Processing Using Deep Learning and Reinforcement Learning
    Valente, Jorge
    Antonio, Joao
    Mora, Carlos
    Jardim, Sandra
    JOURNAL OF IMAGING, 2023, 9 (10)
  • [2] A Survey on Deep Reinforcement Learning for Data Processing and Analytics
    Cai, Qingpeng
    Cui, Can
    Xiong, Yiyuan
    Wang, Wei
    Xie, Zhongle
    Zhang, Meihui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4446 - 4465
  • [3] A Survey on the New Generation of Deep Learning in image Processing
    Mao, Licheng
    Zhao, Jin
    IEEE ACCESS, 2019, 7 : 172231 - 172263
  • [4] A survey of ore image processing based on deep learning
    Wang W.
    Li Q.
    Zhang D.-Z.
    Li H.
    Wang H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (04): : 621 - 631
  • [5] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Morales, Eduardo F.
    Murrieta-Cid, Rafael
    Becerra, Israel
    Esquivel-Basaldua, Marco A.
    INTELLIGENT SERVICE ROBOTICS, 2021, 14 (05) : 773 - 805
  • [6] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Eduardo F. Morales
    Rafael Murrieta-Cid
    Israel Becerra
    Marco A. Esquivel-Basaldua
    Intelligent Service Robotics, 2021, 14 : 773 - 805
  • [7] A Survey on Deep Reinforcement Learning
    Liu Q.
    Zhai J.-W.
    Zhang Z.-Z.
    Zhong S.
    Zhou Q.
    Zhang P.
    Xu J.
    2018, Science Press (41): : 1 - 27
  • [8] Deep reinforcement learning: a survey
    Hao-nan Wang
    Ning Liu
    Yi-yun Zhang
    Da-wei Feng
    Feng Huang
    Dong-sheng Li
    Yi-ming Zhang
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1726 - 1744
  • [9] Deep reinforcement learning: a survey
    Wang, Hao-nan
    Liu, Ning
    Zhang, Yi-yun
    Feng, Da-wei
    Huang, Feng
    Li, Dong-sheng
    Zhang, Yi-ming
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (12) : 1726 - 1744
  • [10] Deep Reinforcement Learning: A Survey
    Wang, Xu
    Wang, Sen
    Liang, Xingxing
    Zhao, Dawei
    Huang, Jincai
    Xu, Xin
    Dai, Bin
    Miao, Qiguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5064 - 5078