Solitary wave solutions and periodic cosine wave solutions of nonlinear wave equations

被引:0
|
作者
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China [1 ]
机构
来源
Shanghai Ligong Daxue Xuebao | 2008年 / 1卷 / 15-21期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The exact solitary wave solutions in the fractional form of hyperbolic secant function and the periodic wave solutions in the form of cosine function for nonlinear wave equations are obtained by use of undetermined assumption method. The bounded properties of these solutions are provided detailedly. The correlative characteristics between the exact solitary wave solutions and the periodic cosine wave solutions, as the traveling wave velocity varies, are revealed.
引用
收藏
相关论文
共 50 条
  • [1] The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations
    Zhou, YB
    Wang, ML
    Miao, TD
    [J]. PHYSICS LETTERS A, 2004, 323 (1-2) : 77 - 88
  • [2] SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS
    MALFLIET, W
    [J]. AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) : 650 - 654
  • [3] Exact solitary wave solutions of nonlinear wave equations
    张桂戌
    李志斌
    段一士
    [J]. Science China Mathematics, 2001, (03) : 396 - 401
  • [4] Exact solitary wave solutions of nonlinear wave equations
    Zhang, GX
    Li, ZB
    Duan, YS
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (03): : 396 - 401
  • [5] Exact solitary wave solutions of nonlinear wave equations
    Guixu Zhang
    Zhibin Li
    Yishi Duan
    [J]. Science in China Series A: Mathematics, 2001, 44 : 396 - 401
  • [6] Solitary wave solutions of nonlinear equations
    Yang, Jinlong
    Han, Rongsheng
    Li, Tongzhong
    Wang, Kelin
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239 (06): : 359 - 363
  • [7] Solitary wave solutions of nonlinear equations
    Yang, JL
    Han, RS
    Li, TZ
    Wang, KL
    [J]. PHYSICS LETTERS A, 1998, 239 (06) : 359 - 363
  • [8] Solitary wave solutions of nonlinear equations
    [J]. Phys Lett Sect A Gen At Solid State Phys, 6 (359):
  • [9] Solitary and periodic wave solutions of nonlinear wave equations via the functional variable method
    Khan, Kamruzzaman
    Akbar, M. Ali
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) : 43 - 57
  • [10] Periodic travelling wave solutions of nonlinear wave equations
    Shi, YM
    Li, TT
    Qin, TH
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (07) : 917 - 923