Enhancing fairness in breast cancer recurrence prediction through temporal machine learning models

被引:0
|
作者
Sundus, Katrina I. [1 ]
Hammo, Bassam H. [1 ,2 ]
Al-Zoubi, Mohammad B. [1 ]
机构
[1] King Abdullah II School of Information Technology, The University of Jordan, Amman, Jordan
[2] King Hussein School of Computing Sciences, Princess Sumaya University for Technology, Amman, Jordan
关键词
Contrastive Learning - Diseases - Logistic regression - Lung cancer - Oncology - Prediction models;
D O I
10.1007/s00521-024-10407-8
中图分类号
学科分类号
摘要
Breast cancer recurrence prediction is a significant challenge in oncology. Advanced methodologies are required to improve prediction accuracy and clinical decision-making. This study presents a novel approach to breast cancer recurrence prediction by integrating machine learning techniques and a hybrid data mining methodology incorporating a temporal dimension into dataset derivation. Our research is based on the Jordan Breast Cancer Dataset (JBRCA), which includes over 44,000 cases spanning 15 years collected from the King Hussein Cancer Center’s registry database in Amman, Jordan. The proposed methodology encompasses data understanding, preparation, and model development stages. We use a thorough data preparation process involving multicollinearity feature selection, feature scaling, and strategic sampling to address dataset challenges. Moreover, we introduce a temporal-derived dataset strategy, dividing the data into four distinct time intervals to capture evolving characteristics and optimize model relevance. We employ diverse base classifiers and ensemble methods to enhance predictive performance in model development. We use evaluation metrics such as accuracy, recall, specificity, G-mean, and ROC-AUC to assess model efficacy across temporal intervals. Our experimental findings reveal significant impacts on classifier performance with temporal dataset derivation, with notable strengths observed in specific classifiers and temporal intervals. For instance, the Naive Bayes model demonstrates efficacy in identifying recurrence cases, while logistic regression exhibits robust performance in ROC-AUC and G-mean metrics. Our study contributes to breast cancer recurrence prediction by introducing a novel methodology that addresses dataset challenges and leverages temporal insights for enhanced predictive accuracy. The findings have a direct impact on clinical practice, providing valuable tools for early detection and improved therapy planning.
引用
收藏
页码:22697 / 22718
页数:21
相关论文
共 50 条
  • [1] Enhancing Algorithmic Fairness in Student Performance Prediction Through Unbiased and Equitable Machine Learning Models
    Cabral, Luciano de Souza
    Pereira, Filipe Dwan
    Mello, Rafael Ferreira
    ARTIFICIAL INTELLIGENCE IN EDUCATION: POSTERS AND LATE BREAKING RESULTS, WORKSHOPS AND TUTORIALS, INDUSTRY AND INNOVATION TRACKS, PRACTITIONERS, DOCTORAL CONSORTIUM AND BLUE SKY, AIED 2024, PT I, 2024, 2150 : 418 - 426
  • [2] Machine learning-based models for the prediction of breast cancer recurrence risk
    Duo Zuo
    Lexin Yang
    Yu Jin
    Huan Qi
    Yahui Liu
    Li Ren
    BMC Medical Informatics and Decision Making, 23
  • [3] Machine learning-based models for the prediction of breast cancer recurrence risk
    Zuo, Duo
    Yang, Lexin
    Jin, Yu
    Qi, Huan
    Liu, Yahui
    Ren, Li
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [4] Machine learning-based radiomics models for prediction of locoregional recurrence in patients with breast cancer
    Lee, Joongyo
    Yoo, Sang Kyun
    Kim, Kangpyo
    Lee, Byung Min
    Park, Vivian Youngjean
    Kim, Jin Sung
    Kim, Yong Bae
    ONCOLOGY LETTERS, 2023, 26 (04)
  • [5] Breast Cancer Prediction using Machine Learning Models
    Iparraguirre-Villanueva, Orlando
    Epifania-Huerta, Andres
    Torres-Ceclen, Carmen
    Ruiz-Alvarado, John
    Cabanillas-Carbonell, Michael
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 610 - 620
  • [6] Machine learning models in breast cancer survival prediction
    Montazeri, Mitra
    Montazeri, Mohadeseh
    Montazeri, Mahdieh
    Beigzadeh, Amin
    TECHNOLOGY AND HEALTH CARE, 2016, 24 (01) : 31 - 42
  • [7] Enhancing Breast Cancer Detection with Ensemble Machine Learning Models
    Mohammed, Dawood Salim
    Ahmed, Firas Saaduldeen
    Mohammad, Havall Muhssin
    Hussain, Zozan Saadallah
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 2255 - 2265
  • [8] Enhancing palliative oesophageal cancer treatment pathway prediction and prognostication through machine learning models
    Thavanesan, Navamayooran
    Parfitt, Charlotte
    Bodala, Indu
    Walters, Zoe
    Ramchurn, Sarvapali
    Underwood, Timothy
    Vigneswaran, Ganesh
    BRITISH JOURNAL OF SURGERY, 2024, 111
  • [9] Breast Carcinoma Prediction Through Integration of Machine Learning Models
    Martinez-Licort, Rosmeri
    Leon, Carlos de la Cruz
    Agarwal, Deevyankar
    Sahelices, Benjamin
    de la Torre, Isabel
    Miramontes-Gonzalez, Jose Pablo
    Amoon, Mohammed
    IEEE ACCESS, 2024, 12 : 134635 - 134650
  • [10] Enhancing Classification and Prediction through the Application of Hybrid Machine Learning Models
    Banda, Misheck
    Ngassam, Ernest Ketcha
    Mnkandla, Ernest
    2024 IST-AFRICA CONFERENCE, 2024,