Preparation of Cu/ZnO/Al2O3 catalyst for CO 2 hydrogenation to methanol by CO2 assisted aging

被引:0
|
作者
Wang, Danjun [1 ,2 ]
Tao, Furong [1 ,2 ]
Zhao, Huahua [1 ,2 ]
Song, Huanling [1 ]
Chou, Lingjun [1 ]
机构
[1] State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
[2] Graduate University of Chinese Academy of Sciences, Beijing 100049, China
来源
Chinese Journal of Catalysis | 2011年 / 32卷 / 9-10期
关键词
Zinc oxide - Catalyst activity - Particle size - Aluminum oxide - Copper compounds - Temperature programmed desorption - Methanol - II-VI semiconductors - Scanning electron microscopy - Synthesis gas manufacture - Carbon dioxide - Hydrogenation - X ray diffraction;
D O I
暂无
中图分类号
学科分类号
摘要
A Cu/ZnO/Al2O3 catalyst prepared by adding CO 2 during the aging step was used for methanol synthesis from CO 2 and H2. The catalysts were characterized by N 2 adsorption-desorption, X-ray diffraction, field emission scanning electron microscope, temperature-programmed decomposition, and temperature-programmed reduction. The precursor from the modified method with added CO2 had malachite and hydrotalcite-like phases and was more stable than that of the sample without added CO2. After calcination, the modified catalyst had a higher surface area, larger pore volume, and smaller particle size. The modified catalyst gave a higher activity for methanol synthesis from CO2 hydrogenation in the reaction temperature range of 200-260 °C. © 2011 Dalian Institute of Chemical Physics, the Chinese Academy of Sciences.
引用
收藏
页码:1452 / 1456
相关论文
共 50 条
  • [1] Preparation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol by CO2 Assisted Aging
    Wang Danjun
    Tao Furong
    Zhao Huahua
    Song Huanling
    Chou Lingjun
    CHINESE JOURNAL OF CATALYSIS, 2011, 32 (09) : 1452 - 1456
  • [2] Investigation on Deactivation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol
    Liang, Binglian
    Ma, Junguo
    Su, Xiong
    Yang, Chongya
    Duan, Hongmin
    Zhou, Huanwen
    Deng, Shaoliang
    Li, Lin
    Huang, Yanqiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (21) : 9030 - 9037
  • [3] Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not?
    Kunkes, Edward L.
    Studt, Felix
    Abild-Pedersen, Frank
    Schloegl, Robert
    Behrens, Malte
    JOURNAL OF CATALYSIS, 2015, 328 : 43 - 48
  • [4] The Activity and Stability of Promoted Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol
    Berahim, Nor Hafizah
    Zabidi, Noor Asmawati Mohd
    Ramli, Raihan Mahirah
    Suhaimi, Nur Amirah
    PROCESSES, 2023, 11 (03)
  • [5] Effect of hydrothermal environment on Cu-ZnO/Al2O3 catalyst for hydrogenation of CO2 to methanol
    Li, Jin
    Guo, Qing
    Zhao, Xu
    Hu, Yongke
    Zhang, Shizhong
    Zhao, Yu
    Li, Shaozhong
    MOLECULAR CATALYSIS, 2023, 549
  • [6] Cu/ZnO/Al2O3 Catalyst Modulated by Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol
    Li, Hangjie
    Wang, Liang
    Gao, Xinhua
    Xiao, Feng-Shou
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (29) : 10446 - 10454
  • [7] Cu/ZnO/Al2O3 Catalyst Promoted with Amorphous MgO for Enhanced CO2 Hydrogenation to Methanol
    Chen, Hecao
    Xie, Shangzhi
    Jiang, Zhaocong
    Xu, Jing
    Zhu, Minghui
    CHEMCATCHEM, 2025,
  • [8] A highly active Cu/ZnO/Al2O3 nanofiber catalyst for methanol synthesis through CO2 and CO hydrogenation
    An, X
    Ren, F
    Li, JL
    Wang, JF
    CHINESE JOURNAL OF CATALYSIS, 2005, 26 (09) : 729 - 730
  • [9] Enhancing methanol selectivity of commercial Cu/ZnO/Al2O3 catalyst in CO2 hydrogenation by surface silylation
    Cui, Xiaojing
    Liu, Yequn
    Mei, Yangang
    Li, Jiamei
    Zhang, He
    Zhu, Shanhui
    Niu, Yulan
    Deng, Tiansheng
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 339
  • [10] Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
    Trifan, Bianca
    Lasobras, Javier
    Soler, Jaime
    Herguido, Javier
    Menendez, Miguel
    CATALYSTS, 2021, 11 (07)