Numerical simulation to phenomenon of main vessel free surface flow impact coping for fast reactor by moving particle semi-implicit method

被引:0
|
作者
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China [1 ]
机构
来源
Yuanzineng Kexue Jishu | 2009年 / 10卷 / 910-914期
关键词
Computational methods - Numerical methods - Nuclear fuels - Nuclear power plants - Nuclear energy;
D O I
暂无
中图分类号
学科分类号
摘要
There is the free surface in the main vessel of fast reactor, when long period earthquakes happen, the fluid will impact the coping of vessel and make the reactor dangerous. The flow of the fluid was simulated by moving particle semi-implicit method. The phenomenon on sloshing response of the free surface in the main vessel of fast reactor excited by 3 sine waves was simulated. The impact pressure from the research can provide important loadings for the integrality analysis of the main vessel.
引用
收藏
相关论文
共 50 条
  • [1] Numerical simulation of fluid free surface flow using moving particle semi-implicit method
    School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    Hsi An Chiao Tung Ta Hsueh, 2006, 3 (249-252+288):
  • [2] On the free surface boundary of moving particle semi-implicit method for thermocapillary flow
    Wang, Zidi
    Sugiyama, Tomoyuki
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 266 - 283
  • [3] Compact moving particle semi-implicit method for incompressible free-surface flow
    Wang, Zidi
    Matsumoto, Toshinori
    Duan, Guangtao
    Matsunaga, Takuya
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414
  • [4] Numerical simulation of ball bearing flow field using the moving particle semi-implicit method
    Wu, Wei
    Wei, Chunhui
    Yuan, Shihua
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2022, 16 (01) : 215 - 228
  • [5] Numerical simulation of droplet sliding on an inclined surface using moving particle semi-implicit method
    Tsuyoshi Hattori
    Masaharu Sakai
    Shigeru Akaike
    Seiichi Koshizuka
    Computational Particle Mechanics, 2018, 5 : 477 - 491
  • [6] Numerical simulation of microscopic flow in a fiber bundle using the moving particle semi-implicit method
    Okabe, Tomonaga
    Matsutani, Hiroaki
    Honda, Takashi
    Yashiro, Shigeki
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (10) : 1765 - 1774
  • [7] Numerical simulation of droplet sliding on an inclined surface using moving particle semi-implicit method
    Hattori, Tsuyoshi
    Sakai, Masaharu
    Akaike, Shigeru
    Koshizuka, Seiichi
    COMPUTATIONAL PARTICLE MECHANICS, 2018, 5 (04) : 477 - 491
  • [8] Numerical simulation of water splash by applying moving particle semi-implicit method
    Kouh, J.S.
    Chien, H.P.
    Chang, C.C.
    Chen, Y.J.
    Journal of Taiwan Society of Naval Architects and Marine Engineers, 2008, 27 (02): : 93 - 102
  • [9] Numerical analysis of the nonlinear free surface flow around an advancing ship using moving particle semi-implicit method
    Pak, CholJun
    Han, PokNam
    Ri, KwangChol
    Ri, YongKwang
    Hwang, InChol
    AIP ADVANCES, 2021, 11 (03)
  • [10] A free surfacetraced method for moving particle semi-implicit method
    Pan, Xu-Jie
    Zhang, Huai-Xin
    Sun, Xue-Yao
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2010, 44 (01): : 134 - 138