Importance measure of correlated variables in polynomial output

被引:0
|
作者
机构
[1] Hao, Wenrui
[2] Lü, Zhenzhou
[3] Wei, Pengfei
来源
Hao, W. | 2012年 / Chinese Journal of Theoretical and Applied Mechanics Press卷 / 44期
关键词
Sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Analysis of structural and correlative contributions by correlated variables in polynomial output
    Wu, Danqing
    Lyu, Zhenzhou
    Hu, Jixiang
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2014, 36 (05): : 26 - 32
  • [2] Uncertainty importance measure for models with correlated normal variables
    Hao, Wenrui
    Lu, Zhenzhou
    Wei, Pengfei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2013, 112 : 48 - 58
  • [3] Importance measure of correlated normal variables and its sensitivity analysis
    Hao, Wenrui
    Lu, Zhenzhou
    Tian, Longfei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 99 : 151 - 160
  • [4] A new method on ANN for variance based importance measure analysis of correlated input variables
    Hao, Wenrui
    Lu, Zhenzhou
    Wei, Pengfei
    Feng, Jun
    Wang, Bintuan
    STRUCTURAL SAFETY, 2012, 38 : 56 - 63
  • [5] Importance ranking of correlated variables in one analysis
    Haukaas, Terje
    STRUCTURAL SAFETY, 2023, 104
  • [6] IMPORTANCE OF ADJUSTING FOR CORRELATED CONCOMITANT VARIABLES IN PSYCHIATRIC RESEARCH
    LOCASCIO, JJ
    LEE, J
    MELTZER, HY
    PSYCHIATRY RESEARCH, 1988, 23 (03) : 311 - 327
  • [8] A data-driven polynomial chaos method considering correlated random variables
    Lin, Qizhang
    Xiong, Fenfen
    Wang, Fenggang
    Yang, Xin
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (04) : 2131 - 2147
  • [9] A data-driven polynomial chaos method considering correlated random variables
    Qizhang Lin
    Fenfen Xiong
    Fenggang Wang
    Xin Yang
    Structural and Multidisciplinary Optimization, 2020, 62 : 2131 - 2147
  • [10] Recursive identification of errors-in-variables models with correlated output noise
    Barbieri, Matteo
    Diversi, Roberto
    IFAC PAPERSONLINE, 2021, 54 (07): : 363 - 368