Secure Offloading With Adversarial Multi-Agent Reinforcement Learning Against Intelligent Eavesdroppers in UAV-Enabled Mobile Edge Computing

被引:1
|
作者
Li, Xulong [1 ]
Wei, Huangfu [1 ]
Xu, Xinyi [1 ]
Huo, Jiahao [1 ]
Long, Keping [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Engn & Technol Res Ctr Convergence Network, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Eavesdropping; Trajectory; Reinforcement learning; Resource management; Wireless communication; Internet of Things; Mobile edge computing (MEC); multi-agent reinforcement learning (MARL); resource allocation; unmanned aerial vehicle (UAV); COMMUNICATION;
D O I
10.1109/TMC.2024.3439016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) has attracted widespread attention due to its ability to effectively alleviate the cloud computing load and significantly reduce latency. However, the potential eavesdroppers challenge the security of the MEC systems and the rapid development of artificial intelligence (AI) has made this security situation more severe. In most existing studies, the eavesdroppers are non-intelligent and it is assumed that they are fixed or move in a simple manner. Obviously, there is a gap from such an assumption to the real conditions that the eavesdropping unmanned aerial vehicles (UAVs) may adjust their flight paths intelligently. To better reflect real-world scenarios, we consider a multi-UAV-assisted MEC system in the presence of intelligent eavesdroppers and propose an adversarial multi-agent reinforcement learning (MARL)-based scheme for secure computational offloading and resource allocation. With this scheme, we aim to solve the zero-sum game between the legitimate UAVs and the eavesdropping UAVs, in which the two types of UAVs take turns acting as the agents of MARL to alternately optimize their respective opposing objectives. The simulation experimental results indicate that the proposed scheme significantly outperforms the existing baseline methods in dealing with the intelligent eavesdropping UAVs, and ensures high energy efficiency of Internet of Things (IoT) devices even in the worst-case scenario when dealing with potential eavesdropping threats.
引用
收藏
页码:13914 / 13928
页数:15
相关论文
共 50 条
  • [1] UAV-Enabled Secure Communications by Multi-Agent Deep Reinforcement Learning
    Zhang, Yu
    Mou, Zhiyu
    Gao, Feifei
    Jiang, Jing
    Ding, Ruijin
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 11599 - 11611
  • [2] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [3] Survey on computation offloading in UAV-Enabled mobile edge computing
    Huda, S. M. Asiful
    Moh, Sangman
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 201
  • [4] Deep Reinforcement Learning for Task Allocation in UAV-enabled Mobile Edge Computing
    Yu, Changliang
    Du, Wei
    Ren, Fan
    Zhao, Nan
    ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS-2021), 2022, 312 : 225 - 232
  • [5] Secure Communications for UAV-Enabled Mobile Edge Computing Systems
    Zhou, Yi
    Pan, Cunhua
    Yeoh, Phee Lep
    Wang, Kezhi
    Elkashlan, Maged
    Vucetic, Branka
    Li, Yonghui
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (01) : 376 - 388
  • [6] Energy efficient for UAV-enabled mobile edge computing networks: Intelligent task prediction and offloading
    Wu, Gaoxiang
    Miao, Yiming
    Zhang, Yu
    Barnawi, Ahmed
    COMPUTER COMMUNICATIONS, 2020, 150 (150) : 556 - 562
  • [7] Hybrid UAV-Enabled Secure Offloading via Deep Reinforcement Learning
    Yoo, Seonghoon
    Jeong, Seongah
    Kang, Joonhyuk
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (06) : 972 - 976
  • [8] Multi-Agent Deep Reinforcement Learning for Efficient Computation Offloading in Mobile Edge Computing
    Jiao, Tianzhe
    Feng, Xiaoyue
    Guo, Chaopeng
    Wang, Dongqi
    Song, Jie
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (03): : 3585 - 3603
  • [9] UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design
    Zhou, Fuhui
    Wu, Yongpeng
    Sun, Haijian
    Chu, Zheng
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [10] Distributed Deep Learning-based Task Offloading for UAV-enabled Mobile Edge Computing
    Mukherjee, Mithun
    Kumar, Vikas
    Lat, Ankit
    Guo, Mian
    Matam, Rakesh
    Lv, Yunrong
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 1208 - 1212