The negative spectrum of Schrödinger operators with spherical fractal potentials

被引:0
|
作者
机构
[1] Wu, Bo
[2] Li, Yin
来源
| 1600年 / CESER Publications, Post Box No. 113, Roorkee, 247667, India卷 / 49期
关键词
Anisotropy - Eigenvalues and eigenfunctions - Spheres - Sobolev spaces;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] The Negative Spectrum of Schr?dinger Operators with Fractal Potentials
    Bo Wu
    Hongyong Wang
    Weiyi Su
    [J]. Analysis in Theory and Applications, 2015, 31 (04) : 381 - 393
  • [2] The Spectrum of Schrödinger Operators with Randomly Perturbed Ergodic Potentials
    Artur Avila
    David Damanik
    Anton Gorodetski
    [J]. Geometric and Functional Analysis, 2023, 33 : 364 - 375
  • [3] Multi-dimensional Schrödinger Operators with No Negative Spectrum
    Oleg Safronov
    [J]. Annales Henri Poincaré, 2006, 7 : 781 - 789
  • [4] Continuity of the Measure of the Spectrum for Quasiperiodic Schrödinger Operators with Rough Potentials
    Svetlana Jitomirskaya
    Rajinder Mavi
    [J]. Communications in Mathematical Physics, 2014, 325 : 585 - 601
  • [5] The Negative Spectrum of a Class of Two-Dimensional Schrödinger Operators with Potentials Depending Only on Radius
    A. Laptev
    [J]. Functional Analysis and Its Applications, 2000, 34 : 305 - 307
  • [6] A Spectral Property of Discrete Schrödinger Operators with Non-Negative Potentials
    Ognjen Milatovic
    [J]. Integral Equations and Operator Theory, 2013, 76 : 285 - 300
  • [7] Discrete spectrum of Schrödinger operators with potentials concentrated near conical surfaces
    Sebastian Egger
    Joachim Kerner
    Konstantin Pankrashkin
    [J]. Letters in Mathematical Physics, 2020, 110 : 945 - 968
  • [8] Schrödinger Operators with δ and δ′-Potentials Supported on Hypersurfaces
    Jussi Behrndt
    Matthias Langer
    Vladimir Lotoreichik
    [J]. Annales Henri Poincaré, 2013, 14 : 385 - 423
  • [9] Absolutely Continuous Spectrum of Schrödinger Operators with Slowly Decaying and Oscillating Potentials
    A. Laptev
    S. Naboko
    O. Safronov
    [J]. Communications in Mathematical Physics, 2005, 253 : 611 - 631
  • [10] Hierarchical Schrödinger Operators with Singular Potentials
    Alexander Bendikov
    Alexander Grigor’yan
    Stanislav Molchanov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2023, 323 : 12 - 46