Approximate well-supported nash equilibria in symmetric bimatrix games

被引:11
|
作者
Czumaj, Artur [1 ]
Fasoulakis, Michail [1 ]
Jurdziński, Marcin [1 ]
机构
[1] Centre for Discrete Mathematics and its Applications (DIMAP, Department of Computer Science, University of Warwick, United Kingdom
关键词
13;
D O I
10.1007/978-3-662-44803-8_21
中图分类号
学科分类号
摘要
引用
收藏
页码:244 / 254
相关论文
共 50 条
  • [1] Approximate Well-Supported Nash Equilibria in Symmetric Bimatrix Games
    Czumaj, Artur
    Fasoulakis, Michail
    Jurdzinski, Marcin
    [J]. ALGORITHMIC GAME THEORY, SAGT 2014, 2014, 8768 : 244 - 254
  • [2] Well Supported Approximate Equilibria in Bimatrix Games
    Spyros C. Kontogiannis
    Paul G. Spirakis
    [J]. Algorithmica, 2010, 57 : 653 - 667
  • [3] Well Supported Approximate Equilibria in Bimatrix Games
    Kontogiannis, Spyros C.
    Spirakis, Paul G.
    [J]. ALGORITHMICA, 2010, 57 (04) : 653 - 667
  • [4] Approximate Nash Equilibria in Bimatrix Games
    Boryczka, Urszula
    Juszczuk, Przemyslaw
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT II: THIRD INTERNATIONAL CONFERENCE, ICCCI 2011, 2011, 6923 : 485 - 494
  • [5] Approximate Well-supported Nash Equilibria Below Two-thirds
    John Fearnley
    Paul W. Goldberg
    Rahul Savani
    Troels Bjerre Sørensen
    [J]. Algorithmica, 2016, 76 : 297 - 319
  • [6] Approximate Well-supported Nash Equilibria Below Two-thirds
    Fearnley, John
    Goldberg, Paul W.
    Savani, Rahul
    Sorensen, Troels Bjerre
    [J]. ALGORITHMICA, 2016, 76 (02) : 297 - 319
  • [7] Efficient algorithms for constant well supported approximate equilibria in bimatrix games
    Kontogiannis, Spyros C.
    Spirakis, Paul G.
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 595 - +
  • [8] Well supported approximate equilibria in bimatrix games: A graph theoretic approach
    Kontogiannis, Spyros C.
    Spirakis, Paul G.
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 596 - +
  • [9] An algorithm for finding approximate Nash equilibria in bimatrix games
    Gao, Lunshan
    [J]. SOFT COMPUTING, 2021, 25 (02) : 1181 - 1191
  • [10] New algorithms for approximate Nash equilibria in bimatrix games
    Bosse, Hartwig
    Byrka, Jaroslaw
    Markakis, Evangelos
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (01) : 164 - 173