Contact mechanics for analysis of fracturing and fragmenting solids in the combined finite-discrete element method

被引:0
|
作者
Engineering Department, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom [1 ]
机构
来源
关键词
Computational complexity - Computational mechanics - Deformation;
D O I
10.1007/3-540-31761-9_6
中图分类号
学科分类号
摘要
The combined finite-discrete element method is a new computational method for the simulation of fracturing and fragmenting solids or particulate media where individual particles are deformable. The method combines the power of the finite element method in capturing deformability of solid particles with the power of the discrete element method to accurately represent interaction between individual particles for systems comprising millions of particles. In addition, the method is suitable for the simulation of extensive fracture and/or fragmentation processes. In recent years the method has captured the attention of researchers in a wide field of potential applications and the interest in the method has grown significantly. In this paper key features of the method are explained with special attention being paid to the processing of contact interaction. Also, the new generation of linear time complexity search algorithms has been presented including the NBS and the MR algorithm. In the computational mechanics context, these algorithms are also relevant for the discrete element method, the finite element method and grid generation.
引用
收藏
相关论文
共 50 条
  • [1] A COMBINED FINITE-DISCRETE ELEMENT METHOD IN TRANSIENT DYNAMICS OF FRACTURING SOLIDS
    MUNJIZA, A
    OWEN, DRJ
    BICANIC, N
    [J]. ENGINEERING COMPUTATIONS, 1995, 12 (02) : 145 - 174
  • [2] A combined finite-discrete element method in transient dynamics of fracturing solids
    Munjiza, A.
    Owen, D.R.J.
    Bicanic, N.
    [J]. Engineering Computations (Swansea, Wales), 1995, 12 (02): : 145 - 174
  • [3] Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
    Yan, Chengzeng
    Zheng, Hong
    Sun, Guanhua
    Ge, Xiurun
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2016, 49 (04) : 1389 - 1410
  • [4] Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
    Chengzeng Yan
    Hong Zheng
    Guanhua Sun
    Xiurun Ge
    [J]. Rock Mechanics and Rock Engineering, 2016, 49 : 1389 - 1410
  • [5] Modeling Simultaneous Multiple Fracturing Using the Combined Finite-Discrete Element Method
    Liu, Quansheng
    Sun, Lei
    Liu, Pingli
    Chen, Lei
    [J]. GEOFLUIDS, 2018,
  • [6] HOSS: an implementation of the combined finite-discrete element method
    Knight, Earl E.
    Rougier, Esteban
    Lei, Zhou
    Euser, Bryan
    Chau, Viet
    Boyce, Samuel H.
    Gao, Ke
    Okubo, Kurama
    Froment, Marouchka
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 765 - 787
  • [7] Structural applications of the combined finite-discrete element method
    Munjiza, Ante
    Smoljanovic, Hrvoje
    Zivaljic, Nikolina
    Mihanovic, Ante
    Divic, Vladimir
    Uzelac, Ivana
    Nikolic, Zeljana
    Balic, Ivan
    Trogrlic, Boris
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 1029 - 1046
  • [8] Nonlinear analysis of engineering structures by combined finite-discrete element method
    Smoljanovic, Hrvoje
    Zivaljic, Nikolina
    Nikolic, Zeljana
    [J]. GRADEVINAR, 2013, 65 (04): : 331 - 344
  • [9] HOSS: an implementation of the combined finite-discrete element method
    Earl E. Knight
    Esteban Rougier
    Zhou Lei
    Bryan Euser
    Viet Chau
    Samuel H. Boyce
    Ke Gao
    Kurama Okubo
    Marouchka Froment
    [J]. Computational Particle Mechanics, 2020, 7 : 765 - 787
  • [10] Combined finite-discrete element method modeling of rockslides
    Zhou, Wei
    Yuan, Wei
    Ma, Gang
    Chang, Xiao-Lin
    [J]. ENGINEERING COMPUTATIONS, 2016, 33 (05) : 1530 - 1559