Design, fabrication and analysis of triply periodic minimal surface concrete units

被引:0
|
作者
Righi, Mariana [1 ]
Yavartanoo, Fahimeh [1 ]
Alaeva, Sofiia [1 ]
Bolhassani, Damon [1 ]
机构
[1] CUNY City Coll, Spitzer Sch Architecture, ABC Lab, New York, NY 10031 USA
来源
关键词
Triply periodic minimal surface; 3d graphic statics; Robotic fabrication; Computer vision;
D O I
10.1016/j.jobe.2024.111286
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This research investigates the design, fabrication, and structural performance of triply periodic minimal surface concrete units. The main goal is to design a unit with the least amount of concrete to be used as a building block for high-performance, low-carbon and efficient structures. Three dimensional graphic statics was used as a design tool along with robotic hot wire cutter and computer vision for fabrication. In total three units, P. Schwarz, Gyroid and a Hybrid, were built and tested experimentally and numerically. The dimensions of each minimal surface units are 30.48 x 30.48 x 30.48 cm (1' x 1' x 1'), with half an inch concrete shell confined between extrudes and intrudes foam. The formwork was built in multiple segments to lower material use. Results showed all units perform very well under the compression which reveals the potential of using these units in building walls, foundation or columns. The FE models accurately simulated the stress distributions, with the locations of high stresses corresponding well with observed crack patterns from experimental tests, thereby validating the numerical simulations. Moreover, the analysis revealed that the P. Schwarz model exhibited significant improvements in strength when confined in multiple directions, with the maximum tensile strength increasing up to 5.5 times compared to the unconfined model.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Design procedure for triply periodic minimal surface based biomimetic scaffolds
    Günther F.
    Wagner M.
    Pilz S.
    Gebert A.
    Zimmermann M.
    Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126
  • [2] Parametric Design of Porous Scaffold with Deformed Triply Periodic Minimal Surface
    Shi Z.
    Wang W.
    Gao J.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (06): : 970 - 976
  • [3] Hierarchical triply periodic minimal surface shell lattices with superior isotropic elasticity: Design guidelines, fabrication, and validation
    Liu, Hui
    Ma, Winston Wai Shing
    Ding, Junhao
    Qu, Shuo
    Li, Rui
    Ge, Qi
    Wang, Michael Yu
    Song, Xu
    ADDITIVE MANUFACTURING, 2024, 94
  • [4] Structural Design and Mechanical Properties Analysis of Fused Triply Periodic Minimal Surface Porous Scaffold
    Zeng, Shoujin
    He, Weihui
    Wang, Jing
    Xu, Mingsan
    Wei, Tieping
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (09) : 4083 - 4096
  • [5] Structural Design and Mechanical Properties Analysis of Fused Triply Periodic Minimal Surface Porous Scaffold
    Shoujin Zeng
    Weihui He
    Jing Wang
    Mingsan Xu
    Tieping Wei
    Journal of Materials Engineering and Performance, 2023, 32 : 4083 - 4096
  • [6] The Morse index of a triply periodic minimal surface
    Ejiri, Norio
    Shoda, Toshihiro
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 177 - 201
  • [7] An isogeometric analysis of functionally graded triply periodic minimal surface microplates
    Nguyen, Nam V.
    Tran, Kim Q.
    Phung-Van, P.
    Lee, Jaehong
    Nguyen-Xuan, H.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 137
  • [8] Air Flow Analysis for Triply Periodic Minimal Surface Heat Exchangers
    Kancs, A.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2024, 61 (06) : 80 - 91
  • [9] Isogeometric analysis of functionally graded triply periodic minimal surface shells
    Nguyen, Tan N.
    Wattanasakulpong, Nuttawit
    Nguyen, Ngoc Phi
    Fakharian, Pouyan
    Eiadtrong, Suppakit
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [10] Triply periodic minimal surface based geometry design of bio-scaffolds
    Tripathi, Yogesh
    Shukla, Mukul
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL, INDUSTRIAL, AUTOMATION AND MANAGEMENT SYSTEMS (AMIAMS) - PROCEEDINGS, 2017, : 348 - 350