Robust Kalman filtering with Moving Horizon Estimation and multivariate Laplace modeling

被引:0
|
作者
Hu, Yue [1 ]
Zhou, Weidong [1 ]
机构
[1] Harbin Engn Univ, Dept Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Measurement outliers; Multivariate Laplace distribution; Variational Bayesian; Moving Horizon Estimation; INFERENCE;
D O I
10.1016/j.measurement.2024.115816
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study introduces a novel approach for state estimation in linear systems impacted by measurement outliers. By analyzing measurement information within a time window, the method enhances measurement utilization efficiency, leading to more accurate identification and mitigation of outliers. Noise is modeled as a Multivariate Laplace (ML) distribution, which effectively avoids the complexity of estimating the degrees of freedom (DOF) parameter. Moreover, the integration of the Variational Bayesian (VB) method with Moving Horizon Estimation (MHE) enables joint inference of unknown parameters, increasing the flexibility and accuracy of the noise model while improving the system's robustness against outliers. Simulation results show that the proposed algorithm outperforms existing methods in both effectiveness and robustness when handling outliers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Critical evaluation of extended Kalman filtering and moving-horizon estimation
    Haseltine, EL
    Rawlings, JB
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (08) : 2451 - 2460
  • [2] Computation of arrival cost for moving horizon estimation via unscented Kalman filtering
    Qu, Cheryl C.
    Hahn, Juergen
    JOURNAL OF PROCESS CONTROL, 2009, 19 (02) : 358 - 363
  • [3] A novel dynamic outlier-robust Kalman filter with Moving Horizon Estimation
    Hu, Yue
    Zhou, Weidong
    ISA TRANSACTIONS, 2024, 151 : 164 - 173
  • [4] Particle filtering and moving horizon estimation
    Rawlings, James B.
    Bakshi, Bhavik R.
    COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (10-12) : 1529 - 1541
  • [5] Adaptive Kalman Filtering with Multivariate Generalized Laplace System Noise
    Khawsithiwong, P.
    Yatawara, N.
    Pongsapukdee, V.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (09) : 1278 - 1290
  • [6] Moving Horizon Estimation for Integrated Navigation Filtering
    Poloni, Tomas
    Rohal'-Ilkiv, Boris
    Johansen, Tor Arne
    IFAC PAPERSONLINE, 2015, 48 (23): : 519 - 526
  • [7] Robust Kalman filtering with perturbation estimation process
    Kwon, SangJoo
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 997 - 1002
  • [8] Robust Bayesian inference for moving horizon estimation☆
    Cao, Wenhan
    Liu, Chang
    Lan, Zhiqian
    Li, Shengbo Eben
    Pan, Wei
    Alessandri, Angelo
    AUTOMATICA, 2025, 173
  • [9] A Computationally Efficient Robust Cubature Kalman Filter With Multivariate Laplace Distribution
    Fu, Hongpo
    Cheng, Yongmei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon
    Fang, Huazhen
    Tian, Ning
    Wang, Yebin
    Zhou, MengChu
    Haile, Mulugeta A.
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (02) : 401 - 417