Computing nonlinear normal modes using numerical continuation and force appropriation

被引:0
|
作者
Kuether, Robert J. [1 ]
Allen, Matthew S. [1 ]
机构
[1] Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, 53706, United States
来源
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Equations of motion
引用
收藏
页码:329 / 340
相关论文
共 50 条
  • [1] COMPUTING NONLINEAR NORMAL MODES USING NUMERICAL CONTINUATION AND FORCE APPROPRIATION
    Kuether, Robert J.
    Allen, Matthew S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 1, PTS A AND B, 2012, : 329 - 340
  • [2] A numerical continuation method to compute nonlinear normal modes using modal reduction
    Allen, Matthew S.
    Kuether, Robert J.
    Deaner, Brandon
    Sracic, Michael W.
    53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012, 2012,
  • [3] Measurement of Nonlinear Normal Modes Using Mono-harmonic Force Appropriation: Experimental Investigation
    Ehrhardt, David A.
    Allen, Matthew S.
    Beberniss, Timothy J.
    NONLINEAR DYNAMICS, VOL 1, 2017, : 241 - 254
  • [4] Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes
    L. Renson
    J. P. Noël
    G. Kerschen
    Nonlinear Dynamics, 2015, 79 : 1293 - 1309
  • [5] Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes
    Renson, L.
    Noel, J. P.
    Kerschen, G.
    NONLINEAR DYNAMICS, 2015, 79 (02) : 1293 - 1309
  • [6] Measurement of nonlinear normal modes using multi-harmonic stepped force appropriation and free decay
    Ehrhardt, David A.
    Allen, Matthew S.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 76-77 : 612 - 633
  • [7] Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques
    Peeters, M.
    Viguie, R.
    Serandour, G.
    Kerschen, G.
    Golinval, J. -C.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (01) : 195 - 216
  • [8] Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form
    Denis, V.
    Jossic, M.
    Giraud-Audine, C.
    Chomette, B.
    Renault, A.
    Thomas, O.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 106 : 430 - 452
  • [9] A numerical method for determining nonlinear normal modes
    Slater, JC
    NONLINEAR DYNAMICS, 1996, 10 (01) : 19 - 30
  • [10] Improved Galerkin method for computing nonlinear normal modes
    Li C.
    Li H.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (18): : 157 - 165and183