Fusing semantic and syntactic information for aspect sentiment triplet extraction

被引:0
|
作者
Su, Na [1 ]
Wang, Anqi [1 ]
Zhang, Lingzhi [1 ]
机构
[1] College of Intelligent Equipment, Shandong University of Science and Technology, Taian, China
来源
关键词
Graph neural networks - Network theory (graphs) - Semantics - Syntactics;
D O I
10.3233/JIFS-238218
中图分类号
学科分类号
摘要
Aspect Sentiment Triplet Extraction (ASTE) aims to extract aspect terms, sentiment polarity and opinion terms explaining the reason for the sentiment from a sentence in the form of triplets. Many existing studies model the context by graph neural networks to learn relevant information from the generated graphs. However, some sentences may have syntactic errors or lack significant grammar, which may lead to poor results on the dataset of the model. In this paper, we propose the Fusing Semantic and Syntactic Information for Aspect Sentiment Triplet Extraction (FSSI) model, which incorporates both syntactic structure and semantic relevance in the context. Specifically, we construct a syntactic graph convolutional network to obtain comprehensive syntactic structure information and a semantic graph convolutional network to obtain global semantic relevance of sentences using the self-Attention mechanism. Furthermore, we concatenate the graph representations generated by the two graph convolution networks to obtain the final enhanced representation. Finally, we apply an effective inference strategy to extract triplets. Extensive experimental results on benchmark datasets show that our model outperforms state-of-The-Art approaches. © 2024-IOS Press. All rights reserved.
引用
收藏
页码:235 / 244
相关论文
共 50 条
  • [1] Semantic and Syntactic Enhanced Aspect Sentiment Triplet Extraction
    Chen, Zhexue
    Huang, Hong
    Liu, Bang
    Shi, Xuanhua
    Jin, Hai
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1474 - 1483
  • [2] Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction
    Guangjin Wang
    Yuanying Wang
    Fuyong Xu
    Yongsheng Zhang
    Peiyu Liu
    The Journal of Supercomputing, 2024, 80 (3) : 3025 - 3041
  • [3] Encoding Syntactic Information into Transformers for Aspect-Based Sentiment Triplet Extraction
    Yuan, Li
    Wang, Jin
    Yu, Liang-Chih
    Zhang, Xuejie
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (02) : 722 - 735
  • [4] Span-based semantic syntactic dual enhancement for aspect sentiment triplet extraction
    Ren, Shuxia
    Guo, Zewei
    Li, Xiaohan
    Zhong, Ruikun
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 63 - 83
  • [5] Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction
    Wang, Guangjin
    Wang, Yuanying
    Xu, Fuyong
    Zhang, Yongsheng
    Liu, Peiyu
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (03): : 3025 - 3041
  • [6] Syntactic and Semantic Enhanced Text Generation Model for Aspect-based Sentiment Triplet Extraction
    Wei, Xin
    Lv, Chengguo
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKS AND INTERNET OF THINGS, CNIOT 2024, 2024, : 545 - 552
  • [7] Fusing Syntactic Structure Information and Lexical Semantic Information for End-to-End Aspect-Based Sentiment Analysis
    Bie, Yong
    Yang, Yan
    Zhang, Yiling
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (02): : 230 - 243
  • [8] Enhancing aspect and opinion terms semantic relation for aspect sentiment triplet extraction
    Zhang, Yongsheng
    Ding, Qi
    Zhu, Zhenfang
    Liu, Peiyu
    Xie, Fu
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 59 (02) : 523 - 542
  • [9] Enhancing aspect and opinion terms semantic relation for aspect sentiment triplet extraction
    Yongsheng Zhang
    Qi Ding
    Zhenfang Zhu
    Peiyu Liu
    Fu Xie
    Journal of Intelligent Information Systems, 2022, 59 : 523 - 542
  • [10] Span-based syntactic feature fusion for aspect sentiment triplet extraction
    Xu, Guangtao
    Yang, Zhihao
    Xu, Bo
    Luo, Ling
    Lin, Hongfei
    INFORMATION FUSION, 2025, 120