Estimating case base complexity using Fractal Dimension

被引:1
|
作者
机构
[1] Dileep, K.V.S.
[2] Chakraborti, Sutanu
来源
| 1600年 / Springer Verlag卷 / 8765期
关键词
Complex networks - Pattern recognition;
D O I
10.1007/978-3-319-11209-1_17
中图分类号
学科分类号
摘要
This paper presents a novel measure of complexity of a case base. The concept of Fractal Dimensions, which is a generalization of the idea of dimensions, is used to estimate complexity. In terms of a classification problem, the idea of Fractal Dimension is used to estimate the ruggedness of the space spanned by instances along the decision boundary. Experiments over collections of varying complexity show that the measure exhibits strong negative correlation with classification accuracies over several classifiers. We also present empirical findings from experiments over non-textual datasets. © Springer International Publishing Switzerland 2014.
引用
收藏
相关论文
共 50 条
  • [1] Estimating fractal dimension using fuzzy model
    Zeng, X
    Koehl, L
    Vasseur, C
    [J]. FUZZY LOGIC AND INTELLIGENT TECHNOLOGIES FOR NUCLEAR SCIENCE AND INDUSTRY, 1998, : 121 - 128
  • [2] ESTIMATING FRACTAL DIMENSION
    THEILER, J
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (06): : 1055 - 1073
  • [3] ESTIMATING THE DIMENSION OF A FRACTAL
    TAYLOR, CC
    TAYLOR, SJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (02): : 353 - 364
  • [4] ESTIMATING THE PADDY SPIKE YIELD USING FRACTAL DIMENSION
    Gong, Hongju
    Li, Hua
    Yu, Haiming
    Ji, Changying
    [J]. COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE II, VOLUME 3, 2009, : 1533 - 1541
  • [5] ON THE PRACTICE OF ESTIMATING FRACTAL DIMENSION
    CARR, JR
    BENZER, WB
    [J]. MATHEMATICAL GEOLOGY, 1991, 23 (07): : 945 - 958
  • [6] Complexity analysis of EEG in patients with schizophrenia using fractal dimension
    Raghavendra, B. S.
    Dutt, D. Narayana
    Halahalli, Harsha N.
    John, John P.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2009, 30 (08) : 795 - 808
  • [7] Estimating fractal dimension with fractal interpolation function models
    Penn, AI
    Loew, MH
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) : 930 - 937
  • [8] Molecular Complexity Calculated by Fractal Dimension
    von Korff, Modest
    Sander, Thomas
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Molecular Complexity Calculated by Fractal Dimension
    Modest von Korff
    Thomas Sander
    [J]. Scientific Reports, 9
  • [10] Fractal Dimension versus Process Complexity
    Joosten, Joost J.
    Soler-Toscano, Fernando
    Zenil, Hector
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016