Cost-sensitive Bayesian network learning using sampling

被引:0
|
作者
Nashnush, Eman [1 ]
Vadera, Sunil [1 ]
机构
[1] The School of Computing, Science and Engineering, Salford University, Manchester, United Kingdom
关键词
Decision trees;
D O I
10.1007/978-3-319-07692-8_44
中图分类号
学科分类号
摘要
引用
收藏
页码:467 / 476
相关论文
共 50 条
  • [1] Cost-sensitive Bayesian network classifiers
    Jiang, Liangxiao
    Li, Chaoqun
    Wang, Shasha
    PATTERN RECOGNITION LETTERS, 2014, 45 : 211 - 216
  • [2] Roulette sampling for cost-sensitive learning
    Sheng, Victor S.
    Ling, Charles X.
    MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 724 - +
  • [3] Bayesian network-based over-sampling method (BOSME) with application to indirect cost-sensitive learning
    Delgado, Rosario
    Nunez-Gonzalez, J. David
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Bayesian network-based over-sampling method (BOSME) with application to indirect cost-sensitive learning
    Rosario Delgado
    J. David Núñez-González
    Scientific Reports, 12
  • [5] Sampled Bayesian Network Classifiers for Class-Imbalance and Cost-Sensitive Learning
    Jiang, Liangxiao
    Li, Chaoqun
    Cai, Zhihua
    Zhang, Harry
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 512 - 517
  • [6] Annotation cost-sensitive active learning by tree sampling
    Tsou, Yu-Lin
    Lin, Hsuan-Tien
    MACHINE LEARNING, 2019, 108 (05) : 785 - 807
  • [7] Annotation cost-sensitive active learning by tree sampling
    Yu-Lin Tsou
    Hsuan-Tien Lin
    Machine Learning, 2019, 108 : 785 - 807
  • [8] Cost-Sensitive Learning
    Zhou, Zlii-Hua
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2011, 2011, 6820 : 17 - 18
  • [9] Cost-sensitive learning for social network analysis and network measurement
    Zhang Xing
    Wang, Meili
    Zhang Yang
    Ning Jifeng
    COMPUTERS & ELECTRICAL ENGINEERING, 2017, 61 : 67 - 79
  • [10] Adaptive learning cost-sensitive convolutional neural network
    Hou, Yun
    Fan, Hong
    Li, Li
    Li, Bailin
    IET COMPUTER VISION, 2021, 15 (05) : 346 - 355