Multi-agent reinforcement learning for multi-area power exchange

被引:0
|
作者
Xi, Jiachen [1 ]
Garcia, Alfredo [1 ]
Chen, Yu Christine [2 ]
Khatami, Roohallah [3 ]
机构
[1] Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77840 USA
[2] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[3] Southern Illinois Univ, Sch Elect Comp & Biomed Engn, Carbondale, IL USA
关键词
Power system; Reinforcement learning; Uncertainty; Decentralized algorithm; Actor-critic algorithm; MODEL; LOAD;
D O I
10.1016/j.epsr.2024.110711
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Increasing renewable integration leads to faster and more frequent fluctuations in the power system net-load (load minus non-dispatchable renewable generation) along with greater uncertainty in its forecast. These can exacerbate the computational burden of centralized power system optimization (or market clearing) that accounts for variability and uncertainty in net load. Another layer of complexity pertains to estimating accurate models of spatio-temporal net-load uncertainty. Taken together, decentralized approaches for learning to optimize (or to clear a market) using only local information are compelling to explore. This paper develops a decentralized multi-agent reinforcement learning (MARL) approach that seeks to learn optimal policies for operating interconnected power systems under uncertainty. The proposed method incurs less computational and communication burden compared to a centralized stochastic programming approach and offers improved privacy preservation. Numerical simulations involving a three-area test system yield desirable results, with the resulting average net operation costs being less than 5% away from those obtained in a benchmark centralized model predictive control solution.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Cooperative multi-agent reinforcement learning for multi-area integrated scheduling in wafer fabs
    Wang, Ming
    Zhang, Jie
    Zhang, Peng
    Jin, Mengyu
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024,
  • [2] A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of a Multi-Area Power System
    Yan, Ziming
    Xu, Yan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (06) : 4599 - 4608
  • [3] Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning
    Ding, Lifu
    Cui, Youkai
    Yan, Gangfeng
    Huang, Yaojia
    Fan, Zhen
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 157
  • [4] Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning
    Li, Jiawen
    Yu, Tao
    Zhang, Xiaoshun
    APPLIED ENERGY, 2022, 306
  • [5] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [6] When Multi-access Edge Computing Meets Multi-area Intelligent Reflecting Surface: A Multi-agent Reinforcement Learning Approach
    Zhuang, Shen
    He, Ying
    Yu, F. Richard
    Gao, Chengxi
    Pan, Weike
    Ming, Zhong
    2022 IEEE/ACM 30TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2022,
  • [7] Area Coverage Maximization of Multi UAVs Using Multi-Agent Reinforcement Learning
    Wijaya, Glenn B.
    Tamba, Tua A.
    2023 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND ARTIFICIAL INTELLIGENCE, RAAI 2023, 2023, : 1 - 4
  • [8] Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Qiu, Tenghai
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    Yuan, Wanmai
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [9] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [10] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920