Berry phase in nonlinear Tavis-Cummings model

被引:0
|
作者
Liao H. [1 ]
Wang F. [1 ]
Huang S. [1 ]
Chen Z. [1 ]
Liang R. [1 ]
机构
[1] Laboratory of Photon Information Technology, School of Information and Photoelectric Science and Engineering, South China Normal University, Guangzhou
来源
Guangxue Xuebao/Acta Optica Sinica | 2011年 / 31卷 / SUPPL.1期
关键词
Berry phase; Nonlinear Tavis-Cummings model; Numerical simulation; Quantum optics;
D O I
10.3788/AOS201131.s100506
中图分类号
学科分类号
摘要
A nonlinear Tavis-Cummings model describing interaction of two atoms with a single mode nonlinear field is presented. The relation between it and other cavity quantum electrodynamics (QED) model is analyzed. Berry phase and eigenvalues of this quantum system are evaluated explicitly, and how they change with system parameters is studied by numerical simulation. The results show that they relate to the dipole-dipole coupling strength between two atoms and atom-field coupling constant and nonlinear coefficient of field. Besides, the influence on Berry phase of nonlinear coupling effect increases with the addition of the number of the photon.
引用
收藏
相关论文
共 24 条
  • [1] Berry M.V., Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A, 392, 3, pp. 45-47, (1984)
  • [2] Shapere A., Wilczek F., Geometric Phase in Physics, (1989)
  • [3] Fonsecar Romero K.M., Aguiar Pinto A.C., Thomaz M.T., Berry's phase in the presence of a dissipative medium, Physica A, 307, 4, pp. 142-156, (2002)
  • [4] Chen J., Fang M., Effects of the motion of atomic mass centre and field mode structure on dynamics of field phase, Acta Optica Sinica, 20, 7, pp. 890-895, (2000)
  • [5] Li C.F., Guo G.C., Conditions for the existence of non-zero geometric phase and its formula, Acta Physica Sinica, 45, 6, pp. 897-903, (1996)
  • [6] Li B., Zhang D., Wu J., Et al., Bloch theorem for the evolution of state in the cyclic quantum system and the unification of resonant geometric phase, Acta Physica Sinica, 46, 2, pp. 227-237, (1997)
  • [7] Suter D., Mueller K.T., Pines A., Study of the aharonov-anandan quantum phase by NMR interferometry, Phys. Rev. Lett., 60, 13, pp. 1218-1220, (1988)
  • [8] Bhandari R., Samuel J., General setting for Berry's phase, Phys. Rev. Lett., 60, 23, pp. 2339-2342, (1988)
  • [9] Kwiat P.G., Chiao R., Observation of a nonclassical Berry's phase for the photon, Phys. Rev. Lett., 66, 5, pp. 588-591, (1991)
  • [10] Jaynes E.T., Cummings F.W., Quantum and semiclassical radiation theories, Proc. of the IEEE, 51, 1, pp. 89-109, (1963)