Finite volume ALE method based on approximate Riemann solution

被引:0
|
作者
Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China [1 ]
机构
来源
Jisuan Wuli | 2007年 / 5卷 / 543-549期
关键词
Compressible flow;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A 3D finite element ALE method using an approximate Riemann solution
    Chiravalle, V. P.
    Morgan, N. R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 83 (08) : 642 - 663
  • [2] A NONITERATIVE APPROXIMATE SOLUTION METHOD FOR VOLUME CONDUCTOR PROBLEMS BASED ON THE FINITE-DIFFERENCE METHOD
    STOK, CJ
    WOGNUM, PM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1988, 35 (01) : 31 - 35
  • [3] COUPLING OF THE MESHLESS SPH-ALE METHOD WITH A FINITE VOLUME METHOD
    Neuhauser, Magdalena
    Marongiu, Jean-Christophe
    Leboeuf, Francis
    PARTICLE-BASED METHODS III: FUNDAMENTALS AND APPLICATIONS, 2013, : 939 - 948
  • [4] An ALE formulation for compressible flows based on multi-moment finite volume method
    Jin, Peng
    Deng, Xi
    Xiao, Feng
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2018, 12 (01) : 791 - 809
  • [5] A new ALE algorithm based on a mixed finite element - Finite volume approach
    Potapov, SV
    Jacquart, G
    NUMERICAL METHODS IN ENGINEERING '96, 1996, : 868 - 873
  • [6] A fully coupled ALE interface tracking method for a pressure-based finite volume solver
    Vakilipour, Shidvash
    Mohammadi, Masoud
    Ormiston, Scott
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 427
  • [7] Solution of the discrete Boltzmann equation: Based on the finite volume method
    Sun Jia-Kun
    Lin Chuan-Dong
    Su Xian-Li
    Tan Zhi-Cheng
    Chen Ya-Lou
    Ming Ping-Jian
    ACTA PHYSICA SINICA, 2024, 73 (11)
  • [8] A METHOD FOR APPROXIMATE SOLUTION OF THE RIEMANN PROBLEM FOR THE MULTIVELOCITY MODEL OF A HETEROGENEOUS MEDIUM
    Surov, V. S.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2014, 87 (03) : 573 - 581
  • [9] A point-value enhanced finite volume method based on approximate delta functions
    Xuan, Li-Jun
    Majdalani, Joseph
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 37 - 58
  • [10] THE APPROXIMATE SOLUTION OF RIEMANN TYPE PROBLEMS FOR DIRAC EQUATIONS BY NEWTON EMBEDDING METHOD
    Gu, Longfei
    Liu, Yuanyuan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (01): : 326 - 334