FDI-YOLO: Feature disentanglement and interaction network based on YOLO for SAR object detection

被引:2
|
作者
Wang, Peng [1 ]
Luo, Yuan [1 ]
Zhu, Zhilin [1 ,2 ]
机构
[1] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai 264005, Shandong, Peoples R China
[2] Yantai Inst Sci & Technol, Yantai 265699, Shandong, Peoples R China
关键词
Object detection; SAR; YOLOv8; Reversible column network; Attention mechanism; SHIP DETECTION;
D O I
10.1016/j.eswa.2024.125442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synthetic Aperture Radar (SAR) object detection is one of the key measures to ensure maritime traffic and safety. However, SAR images contain a large amount of speckle noise, which poses a challenge to traditional deep learning methods for feature extraction and processing. Therefore, we propose a YOLO-based feature disentanglement and interaction network for SAR object detection (FDI-YOLO). First, FDI-YOLO proposes a reversible cross stage partial network (RCSPNet) as the backbone. The RCSPNet uses reversible transformations to retain more complete feature information for feature extraction and decompose it into feature maps of different dimensions. Then, we propose a structure with cross-scale depth feature interaction (CDFI), which captures the local texture and global semantic information of the in-scale features using crossover frequency semantic perception (CFSP), and then strengthens the linking of the cross-scale features through bidirectional information interaction. Finally, we use an adaptive object detection head and a bounding box regression loss with a dynamic focusing mechanism to further improve the detection capability of FDI-YOLO for SAR images. We conducted experiments on three publicly available SAR datasets, SSDD, ISDD, and HRSID. On these datasets, we achieve F1 scores of 98.1%/88.6%/88.5%, AP50 scores of 98.7%/90.3%/90.9%, and AP50-95 scores of 71.0%/42.4%/64.3%, respectively. The experimental results show that FDI-YOLO is able to perform the task of SAR object detection well with less computational resources.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Object Detection Based on YOLO Network
    Liu, Chengji
    Tao, Yufan
    Liang, Jiawei
    Li, Kai
    Chen, Yihang
    PROCEEDINGS OF 2018 IEEE 4TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2018), 2018, : 799 - 803
  • [2] S-YOLO: A small object detection network based on improved YOLO
    Sun, Yanpeng
    Wang, Chenlu
    Qu, Lele
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 224 - 224
  • [3] YOLO-CIR: The network based on YOLO and ConvNeXt for infrared object detection
    Zhou, Jinjie
    Zhang, Baohui
    Yuan, Xilin
    Lian, Cheng
    Ji, Li
    Zhang, Qian
    Yue, Jiang
    INFRARED PHYSICS & TECHNOLOGY, 2023, 131
  • [4] GCN-YOLO: YOLO Based on Graph Convolutional Network for SAR Vehicle Target Detection
    Chen, Peiyao
    Wang, Yinghua
    Liu, Hongwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 1
  • [5] SHIP DETECTION WITH SAR BASED ON YOLO
    Jiang, Shaobin
    Zhu, Mingcang
    He, Yong
    Zheng, Zezhong
    Zhou, Fangrong
    Zhou, Guoqing
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1647 - 1650
  • [6] SAR Small Ship Detection Based on Enhanced YOLO Network
    Guan, Tianyue
    Chang, Sheng
    Wang, Chunle
    Jia, Xiaoxue
    REMOTE SENSING, 2025, 17 (05)
  • [7] ViT-YOLO:Transformer-Based YOLO for Object Detection
    Zhang, Zixiao
    Lu, Xiaoqiang
    Cao, Guojin
    Yang, Yuting
    Jiao, Licheng
    Liu, Fang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2799 - 2808
  • [8] Object Detection Method Based on Improved YOLO Lightweight Network
    Li Chengyue
    Yao Jianmin
    Lin Zhixian
    Yan Qun
    Fan Baoqing
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [9] Bipolar Morphological YOLO Network for Object Detection
    Zingerenko, Michael
    Limonova, Elena
    SIXTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2023, 2024, 13072
  • [10] GCL-YOLO: A GhostConv-Based Lightweight YOLO Network for UAV Small Object Detection
    Cao, Jinshan
    Bao, Wenshu
    Shang, Haixing
    Yuan, Ming
    Cheng, Qian
    REMOTE SENSING, 2023, 15 (20)