Terrain classification and rock abundance analysis at Utopia Planitia using Zhurong image data based on deep learning algorithms

被引:0
|
作者
Shen, Yan [1 ]
Pan, Dong [2 ]
Cao, Hongtao [1 ]
Yuan, Baofeng [2 ]
Jia, Yang [2 ]
He, Lianbin [1 ]
Zou, Meng [1 ]
机构
[1] Key Laboratory for Bionics Engineering of Education Ministry, Changchun, Jilin,130022, China
[2] Institute of Spacecraft System Engineering, CAST, Beijing,100094, China
基金
中国国家自然科学基金;
关键词
Deep neural networks - Image segmentation - Jurassic - Martian surface analysis - Motion planning;
D O I
10.1016/j.jterra.2024.101022
中图分类号
学科分类号
摘要
The complexity of image scene information presents challenges for the trafficability assessment and path planning of Mars rovers. To ensure the operational safety of Mars rovers and extract terrain features from complex image scenes, this paper develops an end-to-end deep learning model, using the deep convolutional neural networks ResNet50 and DeepLabV3 + as the framework, with images from the Zhurong rover's navigation camera as the training and test datasets. A deep learning model suitable for classification and segmentation of terrain in the Mars Utopia Planitia region has been established and applied to planetary geology research. The classification accuracy of model exceeds 83.90 % and segmentation accuracy exceeds 80 %. Subsequently, an analysis of 1309 raw images from the navigation camera yielded 203,744 individual estimates of rock abundance, the model evaluates the rock abundance in the Utopia Planitia region, where the Zhurong rover is located, at 10.94 %. The terrain classification model proposed in this study provides both engineering and scientific value for future rovers on the Utopia Planitia. © 2024 ISTVS
引用
收藏
相关论文
共 50 条
  • [1] Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
    Wang, Pin
    Fan, En
    Wang, Peng
    PATTERN RECOGNITION LETTERS, 2021, 141 : 61 - 67
  • [2] A survey of automated data augmentation algorithms for deep learning-based image classification tasks
    Zihan Yang
    Richard O. Sinnott
    James Bailey
    Qiuhong Ke
    Knowledge and Information Systems, 2023, 65 : 2805 - 2861
  • [3] A survey of automated data augmentation algorithms for deep learning-based image classification tasks
    Yang, Zihan
    Sinnott, Richard O.
    Bailey, James
    Ke, Qiuhong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (07) : 2805 - 2861
  • [4] Medical image analysis using deep learning algorithms
    Li, Mengfang
    Jiang, Yuanyuan
    Zhang, Yanzhou
    Zhu, Haisheng
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [5] HYPERSPECTRAL IMAGE CLASSIFICATION USING RANDOM FOREST AND DEEP LEARNING ALGORITHMS
    Rissati, J., V
    Molina, P. C.
    Anjos, C. S.
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 132 - 132
  • [6] Terrain classification using mars raw images based on deep learning algorithms with application to wheeled planetary rovers
    Guo, Junlong
    Zhang, Xingyang
    Dong, Yunpeng
    Xue, Zhao
    Huang, Bo
    JOURNAL OF TERRAMECHANICS, 2023, 108 : 33 - 38
  • [7] Deep learning-based automated terrain classification using high-resolution DEM data
    Yang, Jiaqi
    Xu, Jun
    Lv, Yunshuo
    Zhou, Chenghu
    Zhu, Yunqiang
    Cheng, Weiming
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 118
  • [8] Rock image classification using deep residual neural network with transfer learning
    Chen, Weihao
    Su, Lumei
    Chen, Xinqiang
    Huang, Zhihao
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [9] Classification of Image and Text Data Using Deep Learning-Based LSTM Model
    Yechuri, Praveen Kumar
    Ramadass, Suguna
    TRAITEMENT DU SIGNAL, 2021, 38 (06) : 1809 - 1817
  • [10] Pathology Image Analysis Using Segmentation Deep Learning Algorithms
    Wang, Shidan
    Yang, Donghan M.
    Rang, Ruichen
    Zhan, Xiaowei
    Xiao, Guanghua
    AMERICAN JOURNAL OF PATHOLOGY, 2019, 189 (09): : 1686 - 1698