Deep learning-based fault diagnosis and localization method for fiber optic cables in communication networks

被引:0
|
作者
Zhang L. [1 ,2 ]
Gao W. [2 ]
Yan L. [1 ,2 ]
机构
[1] Information and Communication Branch of State Grid of Shanxi Electric Power Company, Shanxi, Taiyuan
[2] State Grid of Shanxi Electric Power Company, Shanxi, Taiyuan
关键词
Adversarial network; Communication network fiber optic cable fault; Convolutional neural network; DCGAN-CNN algorithm; Deep learning algorithm;
D O I
10.2478/amns.2023.2.00241
中图分类号
学科分类号
摘要
With the arrival of the big data era and the development of new network technology, how to use big data technology to diagnose and locate fiber optic cable faults in communication networks has become a hot topic of current concern. Firstly, a combined generative adversarial network and convolutional neural network algorithm is proposed based on a deep learning algorithm, then an improved fault diagnosis model combining generative adversarial network and convolutional neural network algorithm is built, and finally, the combined generative adversarial network and convolutional neural network model is used to verify and analyze the fiber optic cable fault diagnosis. The results show that the accuracy of the DCGAN-CNN algorithm for fiber optic cable fault diagnosis is 98.5%, and the research results verify the effectiveness of the combined generative adversarial network and convolutional neural network model for fiber optic cable fault diagnosis. This study can accurately and comprehensively solve the problem of fiber optic cable faults in communication networks and thus play a guiding reference value for developing fault diagnosis in Chinese communication networks. © 2023 Lixia Zhang et al., published by Sciendo.
引用
收藏
相关论文
共 50 条
  • [1] A Graph Deep Learning-Based Fault Detection and Positioning Method for Internet Communication Networks
    Wang, Xiaoyu
    Fu, Zixuan
    Li, Xiaofei
    IEEE ACCESS, 2023, 11 : 102261 - 102270
  • [2] Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks
    Liu, J. Z.
    Qu, Q. L.
    Yang, H. Y.
    Zhang, J. M.
    Liu, Z. D.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (04)
  • [3] Deep Learning-Based Composite Fault Diagnosis
    An, Zining
    Wu, Fan
    Zhang, Cong
    Ma, Jinhao
    Sun, Bo
    Tang, Bihua
    Liu, Yuanan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 572 - 581
  • [4] Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
    Pham, Minh Tuan
    Kim, Jong-Myon
    Kim, Cheol Hong
    SENSORS, 2020, 20 (23) : 1 - 15
  • [5] Deep residual learning-based fault diagnosis method for rotating machinery
    Zhang, Wei
    Li, Xiang
    Ding, Qian
    ISA TRANSACTIONS, 2019, 95 : 295 - 305
  • [6] Deep Learning-Based Fault Knowledge Graph Construction for Power Communication Networks
    Gao Dequan
    Zhu Pengyu
    Wang Sheng
    Zhao Ziyan
    2024 6TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES 2024, 2024, : 1088 - 1093
  • [7] Deep Learning-Based Fault Localization with Contextual Information
    Zhang, Zhuo
    Lei, Yan
    Tan, Qingping
    Mao, Xiaoguang
    Zeng, Ping
    Chang, Xi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (12) : 3027 - 3031
  • [8] A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning
    Li, Yang
    Gu, Xiaojiao
    Wei, Yonghe
    Sensors, 2024, 24 (23)
  • [9] Deep Learning-Based Domain Adaptation Method for Fault Diagnosis in Semiconductor Manufacturing
    Azamfar, Moslem
    Li, Xiang
    Lee, Jay
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2020, 33 (03) : 445 - 453
  • [10] A Deep Learning-Based Fault Diagnosis Method for Flexible Converter Valve Equipment
    Guo, Jianbao
    Liu, Hang
    Feng, Lei
    Zu, Lifeng
    Ma, Taihu
    Mu, Xiaole
    IEEE ACCESS, 2024, 12 : 96481 - 96493