Equi-normalized robust positively invariant sets for linear difference inclusions

被引:0
|
作者
Raković, Saša V. [1 ]
Trodden, Paul [2 ]
机构
[1] Beijing Institute of Technology, Beijing, China
[2] The University of Sheffield, Sheffield, United Kingdom
关键词
Consensus algorithm - Integer linear programming - Optimization algorithms;
D O I
10.1016/j.automatica.2024.111930
中图分类号
学科分类号
摘要
This note establishes the characterization, existence and uniqueness of equi-normalized polytopic robust positively invariant sets for linear difference inclusions. The computation of this set results in a nonconvex optimization problem. Although this may be reformulated exactly as a mixed integer linear programme, we propose a more practical and tractable alternative in the form of a fixed-point iteration based on linear programming. Convergence of the algorithm is established. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 31 条
  • [1] Equi-normalized Robust Positively Invariant Sets
    Rakovic S.V.
    Zhang S.
    IEEE Transactions on Automatic Control, 2024, 69 (11) : 1 - 8
  • [2] On the minimal robust positively invariant set for linear difference inclusions
    Kouramas, K. I.
    Rakovic, S. V.
    Kerrigan, E. C.
    Allwright, J. C.
    Mayne, D. Q.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 2296 - 2301
  • [3] Invariant convex approximations of the minimal robust invariant set for linear difference inclusions
    Ghasemi, Mohammad S.
    Afzalian, Ali A.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 27 : 289 - 297
  • [4] Parametric robust positively invariant sets for linear systems with scaled disturbances
    Darup, Moritz Schulze
    Schaich, Rainer Manuel
    Cannon, Mark
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1496 - 1501
  • [5] How scaling of the disturbance set affects robust positively invariant sets for linear systems
    Darup, Moritz Schulze
    Schaich, Rainer
    Cannon, Mark
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (16) : 3236 - 3258
  • [6] On Finitely Determined Minimal Robust Positively Invariant Sets
    Seron, Maria M.
    Olaru, Sorin
    Stoican, Florin
    De Dona, Jose A.
    Kofman, Ernesto J.
    2019 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE (ANZCC), 2019, : 157 - 162
  • [7] Invariant sets computation for convex difference inclusions systems
    Fiacchini, M.
    Alamo, T.
    Camacho, E. F.
    SYSTEMS & CONTROL LETTERS, 2012, 61 (08) : 819 - 826
  • [8] Robust receding horizon control for piecewise linear systems based on constrained positively invariant sets
    Mukai, M
    Azuma, T
    Fujita, M
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2348 - 2353
  • [9] On maximal robust positively invariant sets in constrained nonlinear systems
    Esterhuizen, Willem
    Aschenbruck, Tim
    Streif, Stefan
    AUTOMATICA, 2020, 119
  • [10] Robust positively invariant sets for state dependent and scaled disturbances
    Schaich, Rainer M.
    Cannon, Mark
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 7560 - 7565