Dynamical behavior of a reaction-diffusion-advection chemostat model with Holling III function

被引:1
|
作者
Zhang, Wang [1 ]
Yan, Xiao [2 ]
Maimaiti, Yimamu [3 ]
机构
[1] Baoji Univ Arts & Sci, Inst Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
[2] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Shaanxi, Peoples R China
[3] Xinjiang Univ, Sch Math & Syst Sci, Urumqi 830017, Peoples R China
关键词
Flowing habitat; Coexistence; Competitive exclusion; Critical curves; Numerical simulations; COMPETITION MODEL; COEXISTENCE; GROWTH; SYSTEM;
D O I
10.1007/s11071-024-10366-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper deals with a reaction-diffusion-advection chemostat model with Holling III function. By regarding growth rates of two species as variable parameters, we mainly study the effects of growth rates on extinction and survival of species. More precisely, there exist two critical growth rates and two critical curves, which classify the dynamics of the system into three scenarios: (1) extinction; (2) competitive exclusion; (3) coexistence. As a further development, we take numerical approaches to study the effect of diffusion rates and advection rates on system dynamics and the geometric structure of two critical curves. These interesting analytical and numerical results are instructive and may have important biological implications on this kind of reaction-diffusion-advection chemostat models.
引用
收藏
页码:2897 / 2914
页数:18
相关论文
共 50 条
  • [1] Dynamical behavior of solutions of a reaction-diffusion-advection model with a free boundary
    Sun, Ningkui
    Zhang, Di
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [2] Dynamical behavior of a general reaction-diffusion-advection model for two competing species
    Tang, De
    Ma, Li
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1128 - 1142
  • [3] A Reaction-Diffusion-Advection Chemostat Model in a Flowing Habitat: Mathematical Analysis and Numerical Simulations
    Zhang, Wang
    Nie, Hua
    Wu, Jianhua
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (06):
  • [4] A nonlocal reaction-diffusion-advection model with free boundaries
    Tang, Yaobin
    Dai, Binxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [5] Evolution of conditional dispersal: a reaction-diffusion-advection model
    Chen, Xinfu
    Hambrock, Richard
    Lou, Yuan
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (03) : 361 - 386
  • [6] On One Model Problem for the Reaction-Diffusion-Advection Equation
    Davydova, M. A.
    Zakharova, S. A.
    Levashova, N. T.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (09) : 1528 - 1539
  • [7] Asymptotic behavior of an SIS reaction-diffusion-advection model with saturation and spontaneous infection mechanism
    Zhang, Jialiang
    Cui, Renhao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [8] Front formation and dynamics in one reaction-diffusion-advection model
    Volkov V.T.
    Grachev N.E.
    Dmitriev A.V.
    Nefedov N.N.
    Mathematical Models and Computer Simulations, 2011, 3 (2) : 158 - 164
  • [9] Hopf bifurcation in a delayed reaction-diffusion-advection population model
    Chen, Shanshan
    Lou, Yuan
    Wei, Junjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (08) : 5333 - 5359
  • [10] Existence and Stability of Coexistence States for a Reaction-diffusion-advection Model
    Wu, Jianhua
    Yuan, Hailong
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 865 - 880