OL-NE for LQ differential games: A Port-Controlled Hamiltonian system perspective and some computational strategies☆
被引:0
|
作者:
Sassano, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, I-00133 Rome, Italy
Sassano, Mario
[1
]
Mylvaganam, Thulasi
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Aeronaut, London SW7 2AZ, EnglandUniv Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, I-00133 Rome, Italy
Mylvaganam, Thulasi
[2
]
Astolfi, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, I-00133 Rome, Italy
Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, EnglandUniv Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, I-00133 Rome, Italy
Astolfi, Alessandro
[1
,3
]
机构:
[1] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, I-00133 Rome, Italy
[2] Imperial Coll London, Dept Aeronaut, London SW7 2AZ, England
[3] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
Linear Quadratic differential games and their Open-Loop Nash Equilibrium (OL-NE) strategies are studied with a threefold objective. First, it is shown that the state/costate lifted system (arising from the application of Pontryagin's Minimum Principle) is such that its behaviour restricted to the equilibrium subspace can be interpreted as the (non-power-preserving) interconnection of two cyclo-passive Port-Controlled Hamiltonian systems. Such PCH systems constitute the best response generators for each player, thus mimicking and extending the corresponding interpretation of (singleplayer) optimal control problems. Second, by realizing that the behaviour of the lifted dynamics off the equilibrium subspace is "irrelevant"for generating the equilibrium strategies, it is shown that such an invariant subspace can be rendered, via a suitably constructed virtual input, externally asymptotically stable while preserving the OL-NE. Finally, based on these premises we provide a closed-form gradient-descent method to solve the asymmetric coupled Riccati equations characterizing the OL-NE strategies. (c) 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
机构:
Univ Roma Tor Vergata, Dipartimento Ingn Civile Ingn Informat, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Ingn Civile Ingn Informat, I-00133 Rome, Italy
Sassano, M.
Mylvaganam, T.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Aeronaut, London SW7 2AZ, EnglandUniv Roma Tor Vergata, Dipartimento Ingn Civile Ingn Informat, I-00133 Rome, Italy
Mylvaganam, T.
Astolfi, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Ingn Civile Ingn Informat, I-00133 Rome, Italy
Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, EnglandUniv Roma Tor Vergata, Dipartimento Ingn Civile Ingn Informat, I-00133 Rome, Italy
Astolfi, A.
2021 AMERICAN CONTROL CONFERENCE (ACC),
2021,
: 704
-
709