Numerical investigation of passive separation control for an airfoil at low-reynolds-number conditions

被引:0
|
作者
机构
[1] Gross, A.
[2] Fasel, H.F.
来源
| 1600年 / AIAA International卷 / 51期
关键词
Two different passive flow control strategies were investigated for a modified NACA 643-618 airfoil at a chord-based Reynolds number of Re = 64,200 and an angle of attack of α = 8.64 deg. For these conditions, the laminar boundary layer separates from the suction side, resulting in a loss of lift and a drag increase. Distributed roughness elements with roughness Reynolds numbers of Rek = 136 and 446 that were mounted near the leading edge and scalloped leading edges with serration amplitudes of 5 and 0.5% of the chord were considered. The large roughness elements and the scalloped leading edge reduce the flow separation and enhance performance. The flow physics are, however, different. For Rek = 446, the roughness elements result in high-frequency shedding. The shedding results in an accelerated transition of the separated boundary layer. For the scalloped leading edge with 5% serration amplitude, laminar separation bubbles are situated in the leading-edge troughs. The turbulent wedges that originate from these bubbles coalesce near midchord. For a serration amplitude of 0.5%, the separation line is deformed in the spanwise direction in a manner that is reminiscent of stall cells. Copyright © 2013 by Christopher Porter, R. Mark Rennie, Eric J. Jumper;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [1] Numerical Investigation of Passive Separation Control for an Airfoil at Low-Reynolds-Number Conditions
    Gross, A.
    Fasel, H. F.
    AIAA JOURNAL, 2013, 51 (07) : 1553 - 1565
  • [2] Low-Reynolds-number separation on an airfoil
    Lin, JCM
    Pauley, LL
    AIAA JOURNAL, 1996, 34 (08) : 1570 - 1577
  • [3] Numerical Investigation of Plasma-Based Control for Low-Reynolds-Number Airfoil Flows
    Rizzetta, Donald P.
    Visbal, Miguel R.
    AIAA JOURNAL, 2011, 49 (02) : 411 - 425
  • [4] Laminar flow separation and transition on a low-Reynolds-number airfoil
    Yang, Zifeng
    Hu, Hui
    JOURNAL OF AIRCRAFT, 2008, 45 (03): : 1067 - 1070
  • [5] SEPARATION BUBBLE MODEL FOR LOW-REYNOLDS-NUMBER AIRFOIL APPLICATIONS
    SHUM, YK
    MARSDEN, DJ
    JOURNAL OF AIRCRAFT, 1994, 31 (04): : 761 - 766
  • [6] Numerical analysis of low-Reynolds-number flow over airfoil
    National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
    Kongqi Donglixue Xuebao, 2006, 4 (482-486):
  • [7] An experimental study of the laminar flow separation on a low-Reynolds-number airfoil
    Hu, Hui
    Yang, Zifeng
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (05): : 0511011 - 05110111
  • [8] Aerodynamic hysteresis of a low-Reynolds-number airfoil
    Hu, Hui
    Yang, Zifeng
    Igarashi, Hirofumi
    JOURNAL OF AIRCRAFT, 2007, 44 (06): : 2083 - 2086
  • [9] ANALYSIS OF LOW-REYNOLDS-NUMBER AIRFOIL FLOWS
    EKATERINARIS, JA
    CHANDRASEKHARA, MS
    PLATZER, MF
    JOURNAL OF AIRCRAFT, 1995, 32 (03): : 625 - 630
  • [10] Aerodynamic Control of Low-Reynolds-Number Airfoil with Leading-Edge Protuberances
    Zhang, M. M.
    Wang, G. F.
    Xu, J. Z.
    AIAA JOURNAL, 2013, 51 (08) : 1960 - 1971