Accurate and effective wind power forecasting is crucial for wind power dispatch and wind energy development. However, existing methods often lack adaptive updating capabilities and struggle to handle real-time changing data. This paper proposes a new hybrid wind power forecasting model that integrates the Maximal Information Coefficient (MIC), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), an improved Harris Hawks Optimization (IHHO) algorithm, and an Adaptive Deep Learning model with Online Learning and Forgetting mechanisms (ADL-OLF). First, MIC is used to reconstruct input features, enhancing their correlation with the target variable, and DBSCAN is employed to handle outliers in the dataset. The ADL-OLF model enables continuous updating with new data through online learning and forgetting mechanisms. Its deep learning component consists of Bidirectional Long Short-Term Memory (BiLSTM) networks and self-attention mechanisms, which improve the prediction accuracy for sequential data. Finally, IHHO optimizes the parameters of the ADLOLF model, achieving strong predictive performance and adaptability to real-time changing data. Experimental simulations based on actual wind power data over four seasons from a U.S. wind farm show that the proposed model achieves a coefficient of determination exceeding 0.99. Compared with 12 benchmark models (taking IHHO-ADL-OLF as an example), the Root Mean Square Error (RMSE) is reduced by more than 20%. These results indicate that the model significantly improves the accuracy and robustness of wind power forecasting, providing valuable references for the development and optimization of wind power systems.