Incomplete multi-view clustering based on hypergraph

被引:0
|
作者
机构
[1] Chen, Jin
[2] Xu, Huafu
[3] Xue, Jingjing
[4] Gao, Quanxue
[5] Deng, Cheng
[6] Lv, Ziyu
关键词
Non-negative matrix factorization;
D O I
10.1016/j.inffus.2024.102804
中图分类号
学科分类号
摘要
The graph-based incomplete multi-view clustering aims at integrating information from multiple views and utilizes graph models to capture the global and local structure of the data for reconstructing missing data, which is suitable for processing complex data. However, ordinary graph learning methods usually only consider pairwise relationships between data points and cannot unearth higher-order relationships latent in the data. And existing graph clustering methods often divide the process of learning the representations and the clustering process into two separate steps, which may lead to unsatisfactory clustering results. Besides, they also tend to consider only intra-view similarity structures and overlook inter-view ones. To this end, this paper introduces an innovative one-step incomplete multi-view clustering based on hypergraph (IMVC_HG). Specifically, we use a hypergraph to reconstruct missing views, which can better explore the local structure and higher-order information between sample points. Moreover, we use non-negative matrix factorization with orthogonality constraints to equate K-means, which eliminates post-processing operations and avoids the problem of suboptimal results caused by the two-step approach. In addition, the tensor Schatten p-norm is used to better capture the complementary information and low-rank structure between the cluster label matrices of multiple views. Numerous experiments verify the superiority of IMVC_HG. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [1] Incomplete Multi-view Clustering
    Gao, Hang
    Peng, Yuxing
    Jian, Songlei
    INTELLIGENT INFORMATION PROCESSING VIII, 2016, 486 : 245 - 255
  • [2] Projective Incomplete Multi-View Clustering
    Deng, Shijie
    Wen, Jie
    Liu, Chengliang
    Yan, Ke
    Xu, Gehui
    Xu, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10539 - 10551
  • [3] Adversarial Incomplete Multi-view Clustering
    Xu, Cai
    Guan, Ziyu
    Zhao, Wei
    Wu, Hongchang
    Niu, Yunfei
    Ling, Beilei
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3933 - 3939
  • [4] Incomplete multi-view spectral clustering
    Zhao, Qianli
    Zong, Linlin
    Zhang, Xianchao
    Liu, Xinyue
    Yu, Hong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2991 - 3001
  • [5] Incomplete Multi-View Clustering With Complete View Guidance
    Chen, Zhikui
    Li, Yue
    Lou, Kai
    Zhao, Liang
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1247 - 1251
  • [6] Incomplete Multi-view Clustering Based on Self-representation
    Jun Yin
    Jianwei Jiang
    Neural Processing Letters, 2023, 55 : 8673 - 8687
  • [7] Deep embedding based tensor incomplete multi-view clustering
    Song, Peng
    Liu, Zhaohu
    Mu, Jinshuai
    Cheng, Yuanbo
    DIGITAL SIGNAL PROCESSING, 2024, 151
  • [8] Incomplete Multi-view Clustering Based on Self-representation
    Yin, Jun
    Jiang, Jianwei
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 8673 - 8687
  • [9] Weighted Concept Factorization Based Incomplete Multi-view Clustering
    Khan, Ghufran Ahmad
    Khan, Jalaluddin
    Anwar, Taushif
    Ashraf, Zubair
    Javed, Mohammad Hafeez
    Diallo, Bassoma
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 5699 - 5708
  • [10] Adaptive Graph Completion Based Incomplete Multi-View Clustering
    Wen, Jie
    Yan, Ke
    Zhang, Zheng
    Xu, Yong
    Wang, Junqian
    Fei, Lunke
    Zhang, Bob
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2493 - 2504