Parameter identifiability of monostatic mimo chaotic radar using compressed sensing

被引:0
|
作者
机构
[1] Yang, M.
[2] Zhang, G.
来源
Yang, M. (yangmeng372901@163.com) | 2012年 / Electromagnetics Academy卷
关键词
MIMO radar - MIMO systems - Radar signal processing - Singular value decomposition - Signal to noise ratio;
D O I
10.2528/PIERB12072712
中图分类号
学科分类号
摘要
Compressed sensing (CS) has attracted signifint atten-tion in the radar community. The better understanding of CS theory has led to substantial improvements over existing methods in CS radar. But there are also some challenges that should be resolved in order to benefithe most from CS radar, such as radar signal with low signal to noise ratio (Low-SNR). In this paper, we will focuses on mono-static chaotic multiple-inputmultiple-output (MIMO) radar systems and analyze theoretically and numerically the performance of sparsity-exploiting algorithms for the parameter estimation of targets at Low-SNR. The novelty of this paper is that it capitalizes on chaotic coded waveform to construct measurement operator incoherent with noise and singular value decomposition (SVD) to suppress noise. In order to improve the robustness of azimuth estimation interpolation method is applied to construction of sparse bases. The gradient pursuit (GP) algorithm for reconstruction is implemented at Low-SNR. Finally, the conclusions are all demonstrated by simulation experiments.
引用
收藏
相关论文
共 50 条
  • [1] On parameter identifiability of MIMO radar
    Li, Jian
    Stoica, Petre
    Xu, Luzhou
    Roberts, William
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (12) : 968 - 971
  • [2] COMPRESSIVE SENSING BASED PARAMETER ESTIMATION FOR MONOSTATIC MIMO NOISE RADAR
    Yang, M.
    Zhang, G.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2012, 30 (30): : 133 - 143
  • [3] Compressed Sensing in MIMO Radar
    Chen, Chun-Yang
    Vaidyanathan, P. P.
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 41 - 44
  • [4] On parameter identifiability of MIMO radar with waveform diversity
    Wang, Hongyan
    Liao, Guisheng
    Wang, Yong
    Liu, Xiangyang
    SIGNAL PROCESSING, 2011, 91 (08) : 2057 - 2063
  • [5] Parameter Identifiability in a Phased-subarray MIMO Radar
    Backes, Thomas D.
    2014 IEEE AEROSPACE CONFERENCE, 2014,
  • [6] Compressed Sensing for OFDM/MIMO Radar
    Berger, Christian R.
    Zhou, Shengli
    Willett, Peter
    Demissie, Bruno
    Heckenbach, Joerg
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 213 - +
  • [7] Parameter identifiability of space-time MIMO radar
    Hu, Zhenggang
    Peng, Jun
    Luo, Kai
    Jiang, Tao
    DIGITAL SIGNAL PROCESSING, 2019, 90 : 10 - 17
  • [8] Parameter estimation for transmit diversity MIMO radar based on distributed compressed sensing
    Wang, Hai-Qing
    Zhu, Xiao-Hua
    Li, Yu-Sheng
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2012, 34 (12): : 2463 - 2467
  • [9] On Parameter Identifiability of Diversity-Smoothing-Based MIMO Radar
    Shi, Junpeng
    Yang, Zai
    Liu, Yongxiang
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (03) : 1660 - 1675
  • [10] COMPRESSED SENSING FOR MIMO RADAR: A STOCHASTIC PERSPECTIVE
    Tian, Zhi
    Blasch, Erik
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 548 - 551