Generalized zero-shot learning via discriminative and transferable disentangled representations

被引:0
|
作者
Zhang, Chunyu [1 ,2 ]
Li, Zhanshan [1 ,2 ]
机构
[1] College of Computer Science and Technology, Jilin University, Changchun,130012, China
[2] Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun,130012, China
基金
中国国家自然科学基金;
关键词
Adversarial machine learning - Contrastive Learning - Federated learning;
D O I
10.1016/j.neunet.2024.106964
中图分类号
学科分类号
摘要
In generalized zero-shot learning (GZSL), it is required to identify seen and unseen samples under the condition that only seen classes can be obtained during training. Recent methods utilize disentanglement to make the information contained in visual features semantically related, and ensuring semantic consistency and independence of the disentangled representations is the key to achieving better performance. However, we think there are still some limitations. Firstly, due to the fact that only seen classes can be obtained during training, the recognition of unseen samples will be poor. Secondly, the distribution relations of the representation space and the semantic space are different, and ignoring the discrepancy between them may impact the generalization of the model. In addition, the instances are associated with each other, and considering the interactions between them can obtain more discriminative information, which should not be ignored. Thirdly, since the synthesized visual features may not match the corresponding semantic descriptions well, it will compromise the learning of semantic consistency. To overcome these challenges, we propose to learn discriminative and transferable disentangled representations (DTDR) for generalized zero-shot learning. Firstly, we exploit the estimated class similarities to supervise the relations between seen semantic-matched representations and unseen semantic descriptions, thereby gaining better insight into the unseen domain. Secondly, we use cosine similarities between semantic descriptions to constrain the similarities between semantic-matched representations, thereby facilitating the distribution relation of semantic-matched representation space to approximate the distribution relation of semantic space. And during the process, the instance-level correlation can be taken into account. Thirdly, we reconstruct the synthesized visual features into the corresponding semantic descriptions to better establish the associations between them. The experimental results on four datasets verify the effectiveness of our method. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Generalized Zero-Shot Learning via Disentangled Representation
    Li, Xiangyu
    Xu, Zhe
    Wei, Kun
    Deng, Cheng
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1966 - 1974
  • [2] Transferable Contrastive Network for Generalized Zero-Shot Learning
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9764 - 9773
  • [3] Alleviating Domain Shift via Discriminative Learning for Generalized Zero-Shot Learning
    Ye, Yalan
    He, Yukun
    Pan, Tongjie
    Li, Jingjing
    Shen, Heng Tao
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1325 - 1337
  • [4] Task-Independent Knowledge Makes for Transferable Representations for Generalized Zero-Shot Learning
    Wang, Chaoqun
    Chen, Xuejin
    Min, Shaobo
    Sun, Xiaoyan
    Li, Houqiang
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2710 - 2718
  • [5] Discriminative deep attributes for generalized zero-shot learning
    Kim, Hoseong
    Lee, Jewook
    Byun, Hyeran
    [J]. PATTERN RECOGNITION, 2022, 124
  • [6] Learning MLatent Representations for Generalized Zero-Shot Learning
    Ye, Yalan
    Pan, Tongjie
    Luo, Tonghoujun
    Li, Jingjing
    Shen, Heng Tao
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2252 - 2265
  • [7] Discriminative comparison classifier for generalized zero-shot learning
    Hou, Mingzhen
    Xia, Wei
    Zhang, Xiangdong
    Gao, Quanxue
    [J]. NEUROCOMPUTING, 2020, 414 (414) : 10 - 17
  • [8] Zero-shot learning via discriminative representation extraction
    Long, Teng
    Xu, Xing
    Shen, Fumin
    Liu, Li
    Xie, Ning
    Yang, Yang
    [J]. PATTERN RECOGNITION LETTERS, 2018, 109 : 27 - 34
  • [9] Towards Discriminative Feature Generation for Generalized Zero-Shot Learning
    Ge, Jiannan
    Xie, Hongtao
    Li, Pandeng
    Xie, Lingxi
    Min, Shaobo
    Zhang, Yongdong
    [J]. IEEE Transactions on Multimedia, 2024, 26 : 10514 - 10529
  • [10] Disentangled Ontology Embedding for Zero-shot Learning
    Geng, Yuxia
    Chen, Jiaoyan
    Zhang, Wen
    Xu, Yajing
    Chen, Zhuo
    Pan, Jeff Z.
    Huang, Yufeng
    Xiong, Feiyu
    Chen, Huajun
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 443 - 453