Porosity control and properties improvement of Al-Cu alloys via solidification condition optimisation in wire and arc additive manufacturing

被引:3
|
作者
Wang, Zhennan [1 ,2 ]
Lu, Xufei [1 ,2 ]
Lin, Xin [1 ,2 ]
Hao, Zhiwei [1 ,2 ]
Hu, Chenghui [3 ]
Feng, Zhe [1 ,2 ]
Yang, Haiou [1 ,2 ]
Wang, Xinghua [3 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, 127 Youyi West Rd, Xian, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, MIIT Key Lab Met High Performance Addit Mfg & Inno, Xian, Peoples R China
[3] Luoyang Ship Mat Res Inst, Luoyang, Peoples R China
基金
国家重点研发计划;
关键词
Wire and arc additive manufacturing; Porosity reduction; Solidification control; Property enhancement; Al-Cu alloys; RESIDUAL-STRESS; ALUMINUM-ALLOY; THERMOMECHANICAL SIMULATION; METAL TRANSFER; MICROSTRUCTURE; DEFECTS; MG; PARAMETERS; DISTORTION; EVOLUTION;
D O I
10.1080/17452759.2024.2414408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents an innovative liquid-nitrogen cooling (LNC) strategy to address hydrogen porosity in Wire and Arc Additive Manufactured (WAAM) Al-Cu alloys, which negatively affects part properties. A coupled thermo-mechanical finite element model, calibrated with in-situ measurements, is used to analyse the thermal, mechanical and metallurgical evolutions of two single-walls fabricated with conventional gas cooling (CGC) and LNC, respectively. A hydrogen solute coupling model evaluates hydrogen supersaturation during solidification. The LNC strategy significantly reduces porosity by optimising the solidification process: (i) Grain size is reduced, lowering hydrogen concentration at the solid/liquid interface; (ii) The length and duration of the hydrogen supersaturation region are shortened due to higher temperature gradients; (iii) Enhanced Marangoni convection and reduced molten pool depth facilitate hydrogen bubble escape. Compared to the CGC part, the LNC part shows a 63.8% reduction in pore density and a 59.4% reduction in overall porosity, achieving a final porosity of 0.39%. This improves mechanical properties, with the LNC component displaying a yield strength of 100.3 MPa, ultimate tensile strength of 250.1 MPa and elongation to failure of 19.4%. Despite a slight increase in residual stresses, the LNC strategy prevents cracking in Al-Cu alloys with high cracking susceptibility.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Microstructural characteristics and cracking mechanism of Al-Cu alloys in wire arc additive manufacturing
    Xu, Min
    Zhang, Hongda
    Yuan, Tao
    Yan, Zhaoyang
    Chen, Shujun
    MATERIALS CHARACTERIZATION, 2023, 197
  • [2] The Effect of Cu Content on the Microstructure and Properties of the Wire Arc Additive Manufacturing Al-Cu Alloy
    Ren, Lingling
    Wang, Zhenbiao
    Wang, Shuai
    Li, Chengde
    Wang, Wei
    Ming, Zhu
    Zhai, Yuchun
    MATERIALS, 2023, 16 (07)
  • [3] Effect of solution treatment on porosity, tensile properties and fatigue resistance of Al-Cu alloy fabricated by wire arc additive manufacturing
    Miao, Jiale
    Chen, Jiqiang
    Ting, Xing
    Hu, Wei
    Ren, Jieke
    Li, Tao
    Zeng, Lingpeng
    Guan, Renguo
    Ojo, Olanrewaju A.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 1864 - 1874
  • [4] Microstructure evolution and mechanical properties of the wire plus arc additive manufacturing Al-Cu alloy
    Wang, Zhennan
    Lin, Xin
    Wang, Lilin
    Cao, Yang
    Zhou, Yinghui
    Huang, Weidong
    ADDITIVE MANUFACTURING, 2021, 47
  • [5] Porosity in wire arc additive manufacturing of aluminium alloys
    Hauser, Tobias
    Reisch, Raven T.
    Breese, Philipp P.
    Lutz, Benjamin S.
    Pantano, Matteo
    Nalam, Yogesh
    Bela, Katharina
    Kamps, Tobias
    Volpp, Joerg
    Kaplan, Alexander F. H.
    ADDITIVE MANUFACTURING, 2021, 41
  • [6] Influence of CMT Process on Porosity of Wire Arc Additive Manufactured Al-Cu Alloy
    Cong Baoqiang
    Ding Jialuo
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (12) : 3149 - 3153
  • [7] Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy
    Cong, Baoqiang
    Ding, Jialuo
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2014, 43 (12): : 3149 - 3153
  • [8] Microstructure, hardness, and electrical resistivity of Al-Cu alloy fabricated via wire arc additive manufacturing
    Kannan, A. Rajesh
    Rajkumar, V.
    Vasudevan, Srinivasan Vinju
    Jerome, Peter
    Oh, Tae Hwan
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [9] Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing
    Geng, Ruwei
    Du, Jun
    Wei, Zhengying
    Ma, Ninshu
    ADDITIVE MANUFACTURING, 2020, 36
  • [10] Insightful investigation for the strengthening mechanisms of Al-Cu alloy prepared by wire arc additive manufacturing
    Jin, Shuoxun
    Li, Yawen
    Shah, Abdul Wahid
    Sun, Jianxin
    Wan, Bingbing
    Xu, Xing
    Li, Wenfang
    Zhang, Lijuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 9394 - 9404