Effect of mooring system stiffness on floating offshore wind turbine loads in a passively self-adjusting floating wind farm

被引:0
|
作者
Mahfouz, Mohammad Youssef [1 ]
Cheng, Po Wen [1 ]
机构
[1] Univ Stuttgart, Stuttgart Wind Energy, Allmandring 5b, D-70569 Stuttgart, Baden Wurttembe, Germany
关键词
Floating offshore wind; Mooring system design; Self-adjusting wind farm layout; Wake effect; Fatigue analysis; WAKES;
D O I
10.1016/j.renene.2024.121823
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Floating offshore wind turbines (FOWTs) offer a way to reduce wake losses in floating wind farms (FWFs) by using less stiff mooring systems (MS) that allow for self-adjusting layouts. These layouts enable turbines to reposition based on wind speed and direction, improving energy production. This study analyzes three self-adjusting FWF layouts with different MS stiffness and compares the resulting FOWT loads to a baseline FWF with a standard MS design. Our results show that reduced MS stiffness increases loads, especially at the tower base, and yaw stiffness must be maintained above a certain threshold. This is especially important in above-rated wind speeds, where increased aerodynamic yaw moments occur. A self-adjusting layout that adheres to yaw stiffness constraints showed a 1.5% increase in annual energy production (AEP) and a 4% reduction in MS costs using dynamic wake models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A passively self-adjusting floating wind farm layout to increase the annual energy production
    Mahfouz, Mohammad Youssef
    Cheng, Po-Wen
    WIND ENERGY, 2023, 26 (03) : 251 - 265
  • [2] Snap loads on mooring lines of a floating offshore wind turbine structure
    Hsu, Wei-ting
    Thiagarajan, Krish P.
    Hall, Matthew
    MacNicoll, Michael
    Akers, Richard
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9A: OCEAN RENEWABLE ENERGY, 2014,
  • [3] A passively self-adjusting floating wind farm layout to increase the energy production: a sensitivity analysis
    Mahfouz, Mohammad Youssef
    Cheng, Po Wen
    EERA DEEPWIND CONFERENCE 2023, 2023, 2626
  • [4] Extreme mooring tensions due to snap loads on a floating offshore wind turbine system
    Hsu, Wei-ting
    Thiagarajan, Krish P.
    Manuel, Lance
    MARINE STRUCTURES, 2017, 55 : 182 - 199
  • [5] Mooring system fatigue analysis of a floating offshore wind turbine
    Barrera, Carlos
    Battistella, Tommaso
    Guanche, Raul
    Losada, Inigo J.
    OCEAN ENGINEERING, 2020, 195
  • [6] Motion Performance and Mooring System of a Floating Offshore Wind Turbine
    Zhao, Jing
    Zhang, Liang
    Wu, Haitao
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2012, 11 (03) : 328 - 334
  • [7] Dynamic performance of a passively self-adjusting floating wind farm layout to increase the annual energy production
    Mahfouz, Mohammad Youssef
    Lozon, Ericka
    Hall, Matthew
    Cheng, Po Wen
    WIND ENERGY SCIENCE, 2024, 9 (07) : 1595 - 1615
  • [8] Research on Hydrodynamic Performance of Mooring System for Floating Offshore Wind Turbine
    Xiao, Yuan
    Fu, Qiang
    Deng, Yanfei
    Feng, Wei
    Shi, Lei
    Han, Ronggui
    Wang, Kai
    Ship Building of China, 2019, 60 (04) : 53 - 65
  • [9] MOORING SYSTEM DESIGN AND ANALYSIS FOR A FLOATING OFFSHORE WIND TURBINE IN PANTELLERIA
    Ghigo, Alberto
    Niosi, Francesco
    Paduano, Bruno
    Bracco, Giovanni
    Mattiazzo, Giuliana
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 11, 2022,
  • [10] DESIGN ANALYSIS OF SHARED MOORING FOR FLOATING OFFSHORE WIND FARM
    Li, Binbin
    Wang, Chenyu
    Yang, Lei
    Zhao, Wenhua
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 5A, 2024,