Iteration governor for suboptimal MPC with input constraints

被引:0
|
作者
Leung, Jordan [1 ]
Kolmanovsky, Ilya [1 ]
机构
[1] Dept Aerosp Engn, 1320 Beal Ave, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Model predictive control; Constrained control; Reference governors; Quadratic programming; MODEL-PREDICTIVE CONTROL; STABILITY;
D O I
10.1016/j.sysconle.2024.105962
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a supervisory scheme, called the iteration governor (IG), that augments a suboptimal input-constrained MPC policy by performing online selection of the reference command and the number of optimization iterations used to generate a control input. At each time step, an auxiliary reference command is selected so that the state is contained in a region of attraction (ROA) fora corresponding auxiliary equilibrium under optimal MPC. Simultaneously, the number of optimization iterations used to generate the control input is preselected to ensure that the resulting suboptimal input steers the state towards this auxiliary equilibrium. Theoretical guarantees are provided that ensure the auxiliary reference converges to the target reference in finite-time, the state converges to the target equilibrium, and the number of online iterations never exceeds a constant that can be computed offline.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reference Governor for Input-Constrained MPC to Enforce State Constraints at Lower Computational Cost
    Castroviejo-Fernandez, Miguel
    Leung, Jordan
    Kolmanovsky, Ilya
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 1201 - 1208
  • [2] Complexity minimisation of suboptimal MPC without terminal constraints
    Pavlov, Andrei
    Mueller, Matthias
    Manzie, Chris
    Shames, Iman
    IFAC PAPERSONLINE, 2020, 53 (02): : 6089 - 6094
  • [3] ADMM for MPC with state and input constraints, and input nonlinearity
    East, Sebastian
    Cannon, Mark
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4514 - 4519
  • [4] Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints
    Graichen, Knut
    Kugi, Andreas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) : 2576 - 2580
  • [5] Parallel MPC for Linear Systems With Input Constraints
    Jiang, Yuning
    Oravec, Juraj
    Houska, Boris
    Kvasnica, Michal
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3401 - 3408
  • [6] On explicit suboptimal LQR with state and input constraints
    Johansen, TA
    Petersen, I
    Slupphaug, O
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 662 - 667
  • [7] Robust MPC for Asymmetric Input and State Constraints
    Zhang, Shuangxi
    Cai, Yuanli
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2610 - 2615
  • [8] Parallel MPC for Linear Systems With State and Input Constraints
    Shi, Jiahe
    Jiang, Yuning
    Oravec, Juraj
    Houska, Boris
    IEEE CONTROL SYSTEMS LETTERS, 2022, 7 : 229 - 234
  • [9] Stability of Infinite Horizon MPC with Incremental Input Constraints
    Yu Shuyou
    Qu Ting
    Chen Hong
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 4125 - 4130
  • [10] Output Feedback Stochastic MPC with Hard Input Constraints
    Joa, Eunhyek
    Bujarbaruah, Monimoy
    Borrelli, Francesco
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2034 - 2039