Rubisco at interfaces II: Structural reassembly enhances oil-water interface and emulsion stabilization

被引:0
|
作者
Ma, Xingfa [1 ]
Habibi, Mehdi [1 ]
Landman, Jasper [1 ]
Sagis, Leonard M. C. [1 ]
Shen, Penghui [1 ]
机构
[1] Wageningen Univ, Lab Phys & Phys Chem Foods, Bornse Weilanden 9, NL-6708 WG Wageningen, Netherlands
关键词
Rubisco; Molecular structure; Oil-water interface; Interfacial rheology; Emulsifying properties; Shear stability; WHEY SOY PROTEINS; EMULSIFYING PROPERTIES; HIGH-PRESSURE; COALESCENCE; ADSORPTION; STABILITY; RHEOLOGY; HYDROPHOBICITY; FLOCCULATION; BEHAVIOR;
D O I
10.1016/j.foodhyd.2024.110820
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Rubisco is the most abundant protein on earth and has gained extensive attentions as a novel food ingredient, such as an emulsifier. Extraction methods can significantly affect its molecular structures and consequently influence its oil-water interface and emulsion stabilization properties. This work aims to elucidate the role of the Rubisco molecular structure in stabilizing the oil-water interface and the multiphase system of emulsions. Ultrafiltration (mild) and acid precipitation-alkaline redispersion (extensive) were used to extract Rubisco from spinach leaves. Protein molecular properties were characterized by size exclusion chromatography (SEC), circular dichroism (CD), and fluorescence spectrometry. Subsequently, the oil-water interfacial properties, including the adsorption and rheological behavior in both small and large dilatational and shear deformations, and the emulsion stabilization properties of Rubisco were investigated. We found that acid precipitation-alkaline redispersion produced a Rubisco extract (RA) with extensive structural reassembling, compared to the one produced by ultrafiltration (RU), for which nativity was mostly retained. RA had two-fold higher surface hydrophobicity than RU, and this caused RA to adsorb faster to the oil-water interface and developed a stiffer solidlike interface (Gi' = 26 +/- 3 mN/m) than RU (Gi' = 15 +/- 2 mN/m), which was also more resistant to density changes in large dilatational deformations. Consequently, RA displayed higher emulsifying activity and emulsion stability to coalescence during bulk shear and storage. Additionally, structural reassembly resulted in a higher value of the zeta potential of RA, which made the emulsion more stable against flocculation, compared to RU. Our study demonstrates that structural reassembly might be a useful strategy to improve the behavior of plant proteins in oil-water interface and emulsion stabilization, and may stimulate the development of new plant protein-stabilized emulsion-based products.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Oil-water interface and emulsion stabilization by pulse proteins
    Shen, Penghui
    Twilt, Fee
    Deng, Boxin
    Peng, Jinfeng
    Schroen, Karin
    Sagis, Leonard M. C.
    Landman, Jasper
    FOOD HYDROCOLLOIDS, 2025, 163
  • [2] VISCOSITY OF OIL-WATER INTERFACES AND EMULSION STABILITY
    CARLESS, JE
    HALLWORT.G
    CHEMISTRY & INDUSTRY, 1966, (01) : 30 - &
  • [3] Rubisco at interfaces I: Conformational flexibility enhances air-water interface and foam stabilization
    Ma, Xingfa
    van Polen, Thomas
    Habibi, Mehdi
    Landman, Jasper
    Sagis, Leonard M. C.
    Shen, Penghui
    FOOD HYDROCOLLOIDS, 2025, 160
  • [4] Adsorption of Hydrophilic Silica Nanoparticles at Oil-Water Interfaces with Reversible Emulsion Stabilization by Ion Partitioning
    Keane, Robert K.
    Hong, Wei
    He, Wei
    Teale, Sam
    Bancroft, Robbie
    Dinsmore, Anthony D.
    LANGMUIR, 2022, 38 (09) : 2821 - 2831
  • [5] Structural Rearrangement of β-Lactoglobulin at Different Oil-Water Interfaces and Its Effect on Emulsion Stability
    Zhai, Jiali
    Wooster, Tim J.
    Hoffmann, Soren V.
    Lee, Tzong-Hsien
    Augustin, Mary Ann
    Aguilar, Marie-Isabel
    LANGMUIR, 2011, 27 (15) : 9227 - 9236
  • [6] Soy soluble polysaccharide stabilization at oil-water interfaces
    Nakamura, A
    Yoshida, R
    Maeda, H
    Corredig, M
    FOOD HYDROCOLLOIDS, 2006, 20 (2-3) : 277 - 283
  • [7] THEORETICAL TREATMENT OF DIFFUSIONAL TRANSPORT INTO AND THROUGH AN OIL-WATER EMULSION WITH AN INTERFACIAL BARRIER AT OIL-WATER INTERFACE
    YOTSUYANAGI, T
    HIGUCHI, WI
    GHANEM, AH
    JOURNAL OF PHARMACEUTICAL SCIENCES, 1973, 62 (01) : 40 - 43
  • [8] Structural conformation of lipids at the oil-water interface
    Campana, Mario
    Webster, John R. P.
    Lawrence, M. Jayne
    Zarbakhsh, Ali
    SOFT MATTER, 2012, 8 (34) : 8904 - 8910
  • [9] Interfacial behavior of cyclodextrins at the oil-water interface of Pickering emulsion
    Cheng, Caiyun
    Yuan, Chao
    Cui, Bo
    Lu, Lu
    Li, Jianpeng
    Sha, Haojie
    FOOD HYDROCOLLOIDS, 2023, 134
  • [10] STABILIZATION OF WATER OIL-WATER MULTIPLE EMULSION WITH HYPERTONIC INNER AQUEOUS PHASE
    KAWASHIMA, Y
    HINO, T
    TAKEUCHI, H
    NIWA, T
    CHEMICAL & PHARMACEUTICAL BULLETIN, 1992, 40 (05) : 1240 - 1246