Numerical investigation of local scour around a 2-degree of freedom vibrating subsea pipeline in steady flow under sagging condition

被引:2
|
作者
Dhamelia, Vatsal [1 ]
Zhao, Ming [1 ]
Hu, Pan [1 ]
Palmer, Heath [1 ]
机构
[1] Western Sydney Univ, Sch Engn Design & Built Environm, Penrith, NSW 2751, Australia
关键词
Local scour; Pipeline; Numerical method; Vortex induced vibration; Vortex shedding; Steady flow; VORTEX-INDUCED VIBRATION; WAVE-INDUCED SCOUR; CIRCULAR-CYLINDER; SIMULATION; BENEATH; MODELS; BED;
D O I
10.1016/j.oceaneng.2024.119890
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Numerical simulations are conducted to investigate the local scour below a sagging subsea pipeline vibrating in two degrees of freedom (2-DOF), covering a sagging ratio from -0.3 to 0 and a wide range of reduced velocities from 0.5 to 15. A negative sagging ratio means that the static balance position of the bottom surface of the pipeline is below the sand surface. The combined effects of the sagging and 2-DOF vibration of the pipeline on the scour are investigated. The maximum scour depth of the 2-DOF vibrating pipeline in the lock-in range of the vibration increases by 10% compared to the 1-DOF; however, the reduced velocity where the maximum scour depth occurs changes from 5 to 6. The variations of the vibration amplitude with the reduced velocity for all the sagging ratios follow a similar trend. For embedment ratios of -0.4 to -0.3, initial condition of scour simulation affects the equilibrium scour depth and vibration amplitudes. Simulations with a flat sand surface as initial condition prevent full scour development because the pipeline reaches its static balance position due to weak flow through the pipeline-to-bed gap. However, if the simulation starts with a sufficiently large initial scour depth, scour can reach its equilibrium.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Numerical investigation of local scour around a vertically vibrating subsea pipeline under steady flow
    Dhamelia, Vatsal
    Zhao, Ming
    Hu, Pan
    OCEAN ENGINEERING, 2023, 285
  • [2] Numerical investigation of local scour beneath a sagging subsea pipeline in steady currents
    Ajdehak, Esmaeil
    Zhao, Ming
    Cheng, Liang
    Draper, Scott
    COASTAL ENGINEERING, 2018, 136 : 106 - 118
  • [3] Numerical investigation of local scour around a vibrating pipeline under steady currents
    Liu, Ming-ming
    Jin, Xin
    Wang, Lu
    Yang, Fan
    Tang, Jinbo
    OCEAN ENGINEERING, 2021, 221
  • [4] Numerical investigation of local scour below a vibrating pipeline under steady currents
    Zhao, Ming
    Cheng, Liang
    COASTAL ENGINEERING, 2010, 57 (04) : 397 - 406
  • [5] Numerical modeling of local scour around a subsea pipeline on cohesive seabed under steady currents
    Zang, Zhipeng
    Zhao, Ming
    Chen, Enbang
    Zhang, Qin
    MARINE GEORESOURCES & GEOTECHNOLOGY, 2025, 43 (03) : 467 - 479
  • [6] Numerical Investigation of the Local Scour Around Subsea Pipelines in Combined Steady and Oscillatory Flow
    Dhamelia, Vatsal
    Zhao, Ming
    Hu, Pan
    Mia, Mohammad Rashed
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2023, 33 (01) : 47 - 53
  • [7] Experimental and Numerical Investigation of Local Scour Around Submarine Piggyback Pipeline Under Steady Current
    Enjin Zhao
    Bing Shi
    Ke Qu
    Wenbin Dong
    Jing Zhang
    Journal of Ocean University of China, 2018, 17 : 244 - 256
  • [8] Experimental and Numerical Investigation of Local Scour Around Submarine Piggyback Pipeline Under Steady Current
    ZHAO Enjin
    SHI Bing
    QU Ke
    DONG Wenbin
    ZHANG Jing
    Journal of Ocean University of China, 2018, 17 (02) : 244 - 256
  • [9] Experimental and Numerical Investigation of Local Scour Around Submarine Piggyback Pipeline Under Steady Current
    Zhao, Enjin
    Shi, Bing
    Qu, Ke
    Dong, Wenbin
    Zhang, Jing
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2018, 17 (02) : 244 - 256
  • [10] Numerical investigate of the effects of surface roughness on local scour around pipeline under steady current condition
    Liu, Mingming
    Tang, Guoqiang
    Zhang, Qin
    Jin, Xin
    OCEAN ENGINEERING, 2023, 290