Ultra-High-Performance Fiber-Reinforced Concrete Composites Incorporating Hybridized Polymer Fibers: Resistance to Static and Impact Loads

被引:0
|
作者
Mostofinejad, Davood [1 ]
Moosaie, Iman [1 ]
Eftekhar, Mohamadreza [1 ]
Hesami, Ebrahim [1 ]
机构
[1] Isfahan Univ Technol, Dept Civil Engn, Esfahan, Iran
关键词
environmental and economic impact; flexural strength; hybrid polyvinyl alcohol (PVA)-polypropylene (PP) fibers; impact resistance; steel fiber; toughness; ultra-high-performance fiber-reinforced concrete (UHPFRC); ENGINEERED CEMENTITIOUS COMPOSITES; MECHANICAL-PROPERTIES; FLEXURAL BEHAVIOR; STRENGTH; SYNERGY; DESIGN; UHPFRC; HYFRC;
D O I
10.14359/51742259
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the mechanical characteristics (encompassing compressive strength, flexural strength, toughness, and impact resistance) of ultra-high-performance fiber-reinforced concrete (UHPFRC) incorporating polypropylene (PP) and polyvinyl alcohol (PVA) fibers. An experimental program was conducted, based on which the polymer and metallic fibers were used at the same fiber content, and different sets of single and hybrid fiber- reinforced composites were fabricated and tested. Despite the fact that it has been exhibited through previous research that the hybridized PVA-PP fibers do not result in the development of the mechanical characteristics of engineered cementitious composites (ECCs), the UHPC composites incorporating such hybrid fibers show augmented levels of toughness, flexural strength, and resistance to impact loads. A comparison was also made to assess the potentiality of the used fibers in terms of environmental impact and cost. Based on the results, hybridization with PVA and PP fibers leads to remarkable improvement in technical performance and mitigation of the economic and environmental impact of UHPFRC composites.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [1] Shear resistance of ultra-high-performance fiber-reinforced concrete
    Tri Thuong Ngo
    Park, Jun Kil
    Pyo, Sukhoon
    Kim, Dong Joo
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 151 : 246 - 257
  • [2] Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction
    Dadmand, Behrooz
    Pourbaba, Masoud
    Sadaghian, Hamed
    Mirmiran, Amir
    ADVANCES IN CONCRETE CONSTRUCTION, 2020, 10 (03) : 195 - 209
  • [3] Strategic use of steel fibers and stirrups on enhancing impact resistance of ultra-high-performance fiber-reinforced concrete beams
    Lee, Jin-Young
    Yuan, Tianfeng
    Shin, Hyun-Oh
    Yoon, Young-Soo
    CEMENT & CONCRETE COMPOSITES, 2020, 107 (107):
  • [4] Strengthening of Reinforced Concrete Columns with Combined Ultra-High-Performance Fiber-Reinforced Concrete and Glass Fiber-Reinforced Polymer Jacketing
    Dadvar, Sayyed Ali
    Mostofinejad, Davood
    Bahmani, Hadi
    ACI STRUCTURAL JOURNAL, 2021, 118 (05) : 285 - 297
  • [5] Size-dependent impact resistance of ultra-high-performance fiber-reinforced concrete beams
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 142 : 363 - 375
  • [6] Flexural capacity of reinforced concrete slabs retrofitted with ultra-high-performance concrete and fiber-reinforced polymer
    Hoang, Viet Hai
    Do, Tu Anh
    Tran, Anh Tuan
    Nguyen, Xuan Huy
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (04)
  • [7] Flexural capacity of reinforced concrete slabs retrofitted with ultra-high-performance concrete and fiber-reinforced polymer
    Viet Hai Hoang
    Tu Anh Do
    Anh Tuan Tran
    Xuan Huy Nguyen
    Innovative Infrastructure Solutions, 2024, 9
  • [8] Flexural behaviors of fiber-reinforced polymer fabric reinforced ultra-high-performance concrete panels
    Meng, Weina
    Khayat, Kamal Henri
    Bao, Yi
    CEMENT & CONCRETE COMPOSITES, 2018, 93 : 43 - 53
  • [9] Interface of Ultra-High-Performance Concrete with Steel, Glass Fiber-Reinforced Polymer, and Basalt Fiber-Reinforced Polymer Reinforcing Bars
    Kim, Yail J.
    Wang, Jun
    ACI STRUCTURAL JOURNAL, 2022, 119 (03) : 3 - 15
  • [10] Modeling of Ultra-High-Performance Fiber-Reinforced Concrete in Shear
    Zhang, Zhongyue
    Vecchio, Frank J.
    Bentz, Evan C.
    Foster, Stephen J.
    ACI STRUCTURAL JOURNAL, 2022, 119 (01) : 295 - +